
Learn to Code 

HTML & CSS
Develop & Style Websites

Shay Howe



LEARN TO CODE HTML & CSS: DEVELOP & STYLE WEBSITES
Shay Howe

NEW RIDERS
www.newriders.com

To report errors, please send a note to errata@peachpit.com
New Riders is an imprint of Peachpit, a division of Pearson Education.
Copyright © 2014 by W. Shay Howe

ISBN 13: 978-0-321-94052-0
ISBN 10: 978-0-321-94052-0

9 8 7 6 5 4 3 2 1

Printed and bound in the United States of America

http://www.newriders.com


Contents
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  x

LESSON 1 Building Your First Web Page  1
What Are HTML & CSS?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2

Understanding Common HTML Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2

Setting Up the HTML Document Structure  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4

Understanding Common CSS Terms  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7

Working with Selectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9

Referencing CSS.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  11

Using CSS Resets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12

Summary .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 16

LESSON 2 Getting to Know HTML  17
Semantics Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Identifying Divisions & Spans.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 18

Using Text-Based Elements .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   20

Building Structure.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   23

Creating Hyperlinks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  29

Summary .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   35

LESSON 3 Getting to Know CSS  36
The Cascade .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   37

Calculating Specificity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  38

Combining Selectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  40

Layering Styles with Multiple Classes.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   42

Common CSS Property Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  44

Summary .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   52



LESSON 4 Opening the Box Model  53
How Are Elements Displayed? .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   54

What Is the Box Model? .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   56

Working with the Box Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  56

Developer Tools .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   67

Summary .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   73

LESSON 5 Positioning Content  74
Positioning with Floats.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   75

Positioning with Inline-Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  87

Creating Reusable Layouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  90

Uniquely Positioning Elements .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   95

Summary .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   98

LESSON 6 Working with Typography  99
Adding Color to Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Changing Font Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  101

Applying Text Properties  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  113

Using Web-Safe Fonts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  123

Embedding Web Fonts .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  124

Including Citations & Quotes .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  128

Summary .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  131

LESSON 7 Setting Backgrounds & Gradients  132
Adding a Background Color .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  133

Adding a Background Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  134

Designing Gradient Backgrounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  142

Using Multiple Background Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  152

Exploring New Background Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  153

Summary .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  156



LESSON 8 Creating Lists  157
Unordered Lists .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  158

Ordered Lists  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  158

Description Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

Nesting Lists .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  162

List Item Styling .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  163

Horizontally Displaying List.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  166

Summary .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  176

LESSON 9 Adding Media  178
Adding Images  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  179

Adding Audio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  189

Adding Video  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  191

Adding Inline Frames .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  193

Semantically Identifying Figures & Captions.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  201

Summary .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   203

LESSON 10 Building Forms  204
Initializing a Form.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   205

Text Fields & Textareas.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   205

Multiple Choice Inputs & Menus.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   208

Form Buttons  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  211

Other Inputs .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  212

Organizing Form Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  212

Form & Input Attributes .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  215

Login Form Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  217

Summary .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   228



LESSON 11 Organizing Data with Tables  229
Creating a Table.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   230

Table Structure  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  234

Table Borders  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  238

Table Striping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

Aligning Text .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   244

Completely Styled Table .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   248

Summary .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 265

LESSON 12 Writing Your Best Code  266
HTML Coding Practices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  267

CSS Coding Practices.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 273

Summary .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  281

Index  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282



Introduction

I come from a family of educators. My parents are both teachers, as is my brother. I was  
the only one in my family not to become a teacher. That said, I love helping others, spread-
ing the knowledge I have about web design, and teaching when possible. To that end, I often 
speak at different conferences and schools, as well as host the occasional workshop. When 
doing so, I continually receive questions about HTML and CSS. So, I wrote this book to be 
that ideal, all-encompassing resource for learning HTML and CSS.

Traditionally, you’ll see books that teach HTML first and then CSS, keeping the two lan-
guages completely separate. But when they’re taught independently, things don’t really 
come together until the very end, which is frustrating for someone new to HTML and 
CSS. I wanted to take a different approach, teaching both languages at the same time so 
that you can see the fruits of your labor sooner rather than later. This book aims to bring 
instant gratification to the web design process.

It was also important to me that the book be project based, providing a completed website 
for readers who work through the book from start to finish. Not everyone learns by read-
ing alone, so I wanted to provide a tangible website to allow people to learn experientially.

And let’s face it, HTML and CSS can be a little daunting at first. After all, the languages are 
ever changing, and the evolution requires a steady stream of up-to-date material. This 
book is written in a workshop-style format, with 12 easy-to-digest lessons. Starting with 
the basics, each lesson builds upon the previous one and breaks down the barriers to entry, 
showing you how you can start writing HTML and CSS today in practical examples. In fact, 
you build a simple web page in the first lesson. Then, in subsequent lessons, you learn not 
only how to make this web page more robust, but also how to create additional design-
savvy and interactive web pages that, when combined, form an entire functional website.

Learn to Code HTML & CSS covers the latest technologies as well as the foundations of 
HTML and CSS that were set years ago. It also covers a range of topics and skills, from 
beginning to advanced. So if you’re looking to become a web designer or developer and 
you want to learn HTML and CSS, then this book is for you.



Lesson 1

Building Your First Web Page

If you can, imagine a time before the invention of the Internet. 

Websites didn’t exist, and books, printed on paper and tightly 

bound, were your primary source of information. It took a con-

siderable amount of effort—and reading—to track down the 

exact piece of information you were after.

Today you can open a web browser, jump over to your search 

engine of choice, and search away. Any bit of imaginable 

information rests at your fingertips. And chances are someone 

somewhere has built a website with your exact search in mind.

Within this book I’m going to show you how to build your own 

websites using the two most dominant computer languages—

HTML and CSS.

Before we begin our journey to learn how to build websites with 

HTML and CSS, it is important to understand the differences 

between the two languages, the syntax of each language, and 

some common terminology.



2 Learn to Code HTML & CSS

What Are HTML & CSS?
HTML, HyperText Markup Language, gives content structure and meaning by defining 
that content as, for example, headings, paragraphs, or images. CSS, or Cascading Style 
Sheets, is a presentation language created to style the appearance of content—using, for 
example, fonts or colors.

The two languages—HTML and CSS—are independent of one another and should remain 
that way. CSS should not be written inside of an HTML document and vice versa. As a 
rule, HTML will always represent content, and CSS will always represent the appearance 
of that content.

With this understanding of the difference between HTML and CSS, let’s dive into HTML 
in more detail.

Understanding Common HTML Terms
While getting started with HTML, you will likely encounter new—and often strange—
terms. Over time you will become more and more familiar with all of them, but the three 
common HTML terms you should begin with are elements, tags, and attributes.

Elements
Elements are designators that define the structure and content of objects within a page. 
Some of the more frequently used elements include multiple levels of headings (identi-
fied as <h1> through <h6> elements) and paragraphs (identified as the <p> element); the 
list goes on to include the <a>, <div>, <span>, <strong>, and <em> elements, and many 
more.

Elements are identified by the use of less-than and greater-than angle brackets, < >,  
surrounding the element name. Thus, an element will look like the following:

1. <a>



Lesson 1 · Building Your First Web Page  3

Tags
The use of less-than and greater-than angle brackets surrounding an element creates 
what is known as a tag. Tags most commonly occur in pairs of opening and closing tags.

An opening tag marks the beginning of an element. It consists of a less-than sign followed 
by an element’s name, and then ends with a greater-than sign; for example, <div>.

A closing tag marks the end of an element. It consists of a less-than sign followed by a for-
ward slash and the element’s name, and then ends with a greater-than sign; for example, 
</div>.

The content that falls between the opening and closing tags is the content of that element. 
An anchor link, for example, will have an opening tag of <a> and a closing tag of </a>. 
What falls between these two tags will be the content of the anchor link.

So, anchor tags will look a bit like this:

1. <a>...</a>

Attributes
Attributes are properties used to provide additional information about an element. The 
most common attributes include the id attribute, which identifies an element; the class 
attribute, which classifies an element; the src attribute, which specifies a source for 
embeddable content; and the href attribute, which provides a hyperlink reference to a 
linked resource.

Attributes are defined within the opening tag, after an element’s name. Generally attri-
butes include a name and a value. The format for these attributes consists of the attribute 
name followed by an equals sign and then a quoted attribute value. For example, an <a> 
element including an href attribute would look like the following:

1. <a href="http://shayhowe.com/">Shay Howe</a>

The preceding code will display the text “Shay Howe” on  
the web page (see Figure 1.1) and will take users to http:// 
shayhowe.com/ upon clicking the “Shay Howe” text. The 
anchor element is declared with the opening <a> and closing 
</a> tags encompassing the text, and the hyperlink reference 
attribute and value are declared with href="http://
shayhowe.com" in the opening tag (see Figure 1.2).

Figure 1.1 An anchor 
element creating a “Shay 
Howe” hyperlink

http://shayhowe.com/
http://shayhowe.com/
http://shayhowe.com
http://shayhowe.com


4 Learn to Code HTML & CSS

Figure 1.2 HTML syntax outline including an element, attribute, and tag

Now that you know what HTML elements, tags, and attributes are, let’s take a look at 
putting together our first web page. If anything looks new here, no worries—we’ll decipher 
it as we go.

Setting Up the HTML Document Structure
HTML documents are plain text documents saved with an .html file extension rather 
than a .txt file extension. To begin writing HTML, you first need a plain text editor that 
you are comfortable using. Sadly this does not include Microsoft Word or Pages, as those 
are rich text editors. Two of the more popular plain text editors for writing HTML and 
CSS are Dreamweaver and Sublime Text. Free alternatives also include Notepad++ for 
Windows and TextWrangler for Mac.

All HTML documents have a required structure that includes the following declaration 
and elements: <!DOCTYPE html>, <html>, <head>, and <body>.

The document type declaration, or <!DOCTYPE html>, informs web browsers which ver-
sion of HTML is being used and is placed at the very beginning of the HTML document. 
Because we’ll be using the latest version of HTML, our document type declaration is 
simply <!DOCTYPE html>. Following the document type declaration, the <html> element 
signifies the beginning of the document.

Inside the <html> element, the <head> element identifies the top of the document, 
including any metadata (accompanying information about the page). The content inside 
the <head> element is not displayed on the web page itself. Instead, it may include the 
document title (which is displayed on the title bar in the browser window), links to any 
external files, or any other beneficial metadata. 

All of the visible content within the web page will fall within the <body> element. A break-
down of a typical HTML document structure looks like this:

1. <!DOCTYPE html>

2. <html lang="en">

3. <head>

4. <meta charset="utf-8">



Lesson 1 · Building Your First Web Page  5

5. <title>Hello World</title>

6. </head>

7. <body>

8. <h1>Hello World</h1>

9. <p>This is a web page.</p>

10. </body>

11. </html>

The preceding code shows the document beginning with the document type declara-
tion, <!DOCTYPE html>, followed directly by the <html> element. Inside the <html> 
element come the <head> and <body> elements. The <head> element includes the 
character encoding of the page via the <meta
charset="utf-8"> tag and the title of the docu-
ment via the <title> element. The <body> ele-
ment includes a heading via the <h1> element and 
a paragraph via the <p> element. Because both 
the heading and paragraph are nested within the 
<body> element, they are visible on the web page 
(see Figure 1.3).

When an element is placed inside of another element, also known as nested, it is a good 
idea to indent that element to keep the document structure well organized and legible.  
In the previous code, both the <head> and <body> elements were nested—and indented—
inside the <html> element. The pattern of indenting for elements continues as new ele-
ments are added inside the <head> and <body> elements.

Self-Closing Elements

In the previous example, the <meta> element had only one tag and didn’t include a closing 
tag. Fear not, this was intentional. Not all elements consist of opening and closing tags. 
Some elements simply receive their content or behavior from attributes within a single 
tag. The <meta> element is one of these elements. The content of the previous <meta> 
element is assigned with the use of the charset attribute and value. Other common self-
closing elements include

• <br>

• <embed>

• <hr>

• <img>

• <input>

• <link>

• <meta>

• <param>

• <source>

• <wbr>

Figure 1.3 A simple web page



6 Learn to Code HTML & CSS

The structure outlined here, making use of the <!DOCTYPE html> document type and 
<html>, <head>, and <body> elements, is quite common. We’ll want to keep this docu-
ment structure handy, as we’ll be using it often as we create new HTML documents.

Code Validation

No matter how careful we are when writing our code, we will inevitably make mistakes. 
Thankfully, when writing HTML and CSS we have validators to check our work. The  
W3C has built both HTML (http://validator.w3.org/) and CSS validators (http:// 
jigsaw.w3.org/css-validator/) that will scan code for mistakes. Validating our code  
not only helps it render properly across all browsers, but also helps teach us the best 
practices for writing code.

In Practice
As web designers and front-end developers, we have the luxury of attending a number 
of great conferences dedicated to our craft. We’re going to make up our own conference, 
Styles Conference, and build a website for it throughout the following lessons. Here we go!

1. Let’s open our text editor, create a new file named index.html, and save it to a 
location we won’t forget. I’m going to create a folder on my Desktop named “styles-
conference” and save this file there; feel free to do the same.

2. Within the index.html file, let’s add the document structure, including the  
<!DOCTYPE html> document type and the <html>, <head>, and <body> elements.

1. <!DOCTYPE html>

2. <html lang="en">

3. <head>

4. </head>

5. <body>

6. </body>

7. </html>

3. Inside the <head> element, let’s add <meta> and <title> elements. The <meta> 
element should include the proper charset attribute and value, while the <title> 
element should contain the title of the page—let’s say “Styles Conference.”

http://validator.w3.org/
http://jigsaw.w3.org/css-validator/
http://jigsaw.w3.org/css-validator/


Lesson 1 · Building Your First Web Page  7

1. <head>

2. <meta charset="utf-8">

3. <title>Styles Conference</title>

4. </head>

4. Inside the <body> element, let’s add <h1> and <p> elements. The <h1> element 
should include the heading we wish to include—let’s use “Styles Conference” again—
and the <p> element should include a simple paragraph to introduce our conference.

1. <body>

2. <h1>Styles Conference</h1>

3. <p>Every year the brightest web designers and front-end

developers descend on Chicago to discuss the latest

technologies. Join us this August!</p>

4. </body>

5. Now it’s time to see how we’ve done! Let’s go find our index.html file (mine is within 
the “styles-conference” folder on my Desktop). Double-clicking this file or dragging it 
into a web browser will open it for us to review. It should look like Figure 1.4.

Figure 1.4 Our first steps into building our Styles Conference website

Let’s switch gears a bit, moving away from HTML, and take a look at CSS. Remember, 
HTML will define the content and structure of our web pages, while CSS will define the 
visual style and appearance of our web pages.

Understanding Common CSS Terms
In addition to HTML terms, there are a few common CSS terms you will want to familiar-
ize yourself with. These terms include selectors, properties, and values. As with the HTML 
terminology, the more you work with CSS, the more these terms will become second nature.



8 Learn to Code HTML & CSS

Selectors
As elements are added to a web page, they may be styled using CSS. A selector desig-
nates exactly which element or elements within our HTML to target and apply styles 
(such as color, size, and position) to. Selectors may include a combination of different 
qualifiers to select unique elements, all depending on how specific we wish to be. For 
example, we may want to select every paragraph on a page, or we may want to select 
only one specific paragraph on a page.

Selectors generally target an attribute value, such as an id or class value, or target the 
type of element, such as <h1> or <p>.

Within CSS, selectors are followed with curly brackets, {}, which encompass the styles to 
be applied to the selected element. The selector here is targeting all <p> elements.

1. p { ... }

Properties
Once an element is selected, a property determines the styles that will be applied to that 
element. Property names fall after a selector, within the curly brackets, {}, and immediately 
preceding a colon, :. There are numerous properties we can use, such as background, 
color, font-size, height, and width, and new properties are often added. In the fol-
lowing code, we are defining the color and font-size properties to be applied to all  
<p> elements.

1. p {

2. color: ...;

3. font-size: ...;

4. }

Values
So far we’ve selected an element with a selector and determined what style we’d like to 
apply with a property. Now we can determine the behavior of that property with a value. 
Values can be identified as the text between the colon, :, and semicolon, ;. Here we are 
selecting all <p> elements and setting the value of the color property to be orange and 
the value of the font-size property to be 16 pixels.



Lesson 1 · Building Your First Web Page  9

1. p {

2. color: orange;

3. font-size: 16px;

4. }

To review, in CSS our rule set begins with the selector, which is immediately followed by 
curly brackets. Within these curly brackets are declarations consisting of property and 
value pairs. Each declaration begins with a property, which is followed by a colon, the 
property value, and finally a semicolon.

It is a common practice to indent property and value pairs 
within the curly brackets. As with HTML, these indentations 
help keep our code organized and legible.

All of these common CSS terms combine in this manner 
(see Figure 1.5).

Knowing a few common terms and the general syntax of 
CSS is a great start, but we have a few more items to learn 
before jumping in too deep. Specifically, we need to take a 
closer look at how selectors work within CSS.

Working with Selectors
Selectors, as previously mentioned, indicate which HTML elements are being styled. It is 
important to fully understand how to use selectors and how they can be leveraged. The 
first step is to become familiar with the different types of selectors. We’ll start with the 
most common selectors: type, class, and ID selectors.

Type Selectors
Type selectors target elements by their element type. For example, should we wish to tar-
get all division elements, <div>, we would use a type selector of div. The following code 
shows a type selector for division elements as well as the corresponding HTML it selects.

Figure 1.5 CSS syntax outline 
including a selector, properties,  
and values

CSS

1. div { ... } 

HTML

1. <div>...</div>

2. <div>...</div>



10 Learn to Code HTML & CSS

Class Selectors
Class selectors allow us to select an element based on the element’s class attribute 
value. Class selectors are a little more specific than type selectors, as they select a par-
ticular group of elements rather than all elements of one type.

Class selectors allow us to apply the same styles to different elements at once by using 
the same class attribute value across multiple elements.

Within CSS, classes are denoted by a leading period, ., followed by the class attribute 
value. Here the class selector will select any element containing the class attribute 
value of awesome, including both division and paragraph elements.

CSS

1. .awesome { ... }

HTML

1. <div class="awesome">...</div>

2. <p class="awesome">...</p>

ID Selectors
ID selectors are even more precise than class selectors, as they target only one unique 
element at a time. Just as class selectors use an element’s class attribute value as the 
selector, ID selectors use an element’s id attribute value as a selector.

Regardless of which type of element they appear on, id attribute values can only be used 
once per page. If used they should be reserved for significant elements.

Within CSS, ID selectors are denoted by a leading hash sign, #, followed by the id attri-
bute value. Here the ID selector will only select the element containing the id attribute 
value of shayhowe.

CSS

1. #shayhowe { ... }

HTML

1. <div id="shayhowe">...</div>



Lesson 1 · Building Your First Web Page  11

Additional Selectors
Selectors are extremely powerful, and the selectors outlined here are the most com- 
mon selectors we’ll come across. These selectors are also only the beginning. Many  
more advanced selectors exist and are readily available. When you feel comfortable  
with these selectors, don’t be afraid to look into some of the more advanced selectors.

All right, everything is starting to come together. We add elements to a page inside our 
HTML, and we can then select those elements and apply styles to them using CSS.  
Now let’s connect the dots between our HTML and CSS, and get these two languages 
working together.

Referencing CSS
In order to get our CSS talking to our HTML, we need to reference our CSS file within our 
HTML. The best practice for referencing our CSS is to include all of our styles in a single 
external style sheet, which is referenced from within the <head> element of our HTML 
document. Using a single external style sheet allows us to use the same styles across an 
entire website and quickly make changes sitewide.

Other Options for Adding CSS

Other options for referencing CSS include using internal and inline styles. You may come 
across these options in the wild, but they are generally frowned upon, as they make 
updating websites cumbersome and unwieldy.

To create our external CSS style sheet, we’ll want to use our text editor of choice again to 
create a new plain text file with a .css file extension. Our CSS file should be saved within 
the same folder, or a subfolder, where our HTML file is located.

Within the <head> element of the HTML document, the <link> element is used to 
define the relationship between the HTML file and the CSS file. Because we are linking 
to CSS, we use the rel attribute with a value of stylesheet to specify their relationship. 
Furthermore, the href (or hyperlink reference) attribute is used to identify the location, 
or path, of the CSS file.



12 Learn to Code HTML & CSS

Consider the following example of an HTML document <head> element that references a 
single external style sheet.

1. <head>

2. <link rel="stylesheet" href="main.css">

3. </head>

In order for the CSS to render correctly, the path of the href attribute value must directly 
correlate to where our CSS file is saved. In the preceding example, the main.css file is 
stored within the same location as the HTML file, also known as the root directory.

If our CSS file is within a subdirectory or subfolder, the href attribute value needs to  
correlate to this path accordingly. For example, if our main.css file were stored within  
a subdirectory named stylesheets, the href attribute value would be stylesheets/
main.css, using a forward slash to indicate moving into a subdirectory.

At this point our pages are starting to come to life, slowly but surely. We haven’t delved 
into CSS too much, but you may have noticed that some elements have default styles 
we haven’t declared within our CSS. That is the browser imposing its own preferred CSS 
styles for those elements. Fortunately we can overwrite these styles fairly easily, which is 
what we’ll do next using CSS resets.

Using CSS Resets
Every web browser has its own default styles for different elements. How Google Chrome 
renders headings, paragraphs, lists, and so forth may be different from how Internet 
Explorer does. To ensure cross-browser compatibility, CSS resets have become widely 
used.

CSS resets take every common HTML element with a predefined style and provide one 
unified style for all browsers. These resets generally involve removing any sizing, margins, 
paddings, or additional styles and toning these values down. Because CSS cascades from 
top to bottom—more on that soon—our reset needs to be at the very top of our style 
sheet. Doing so ensures that those styles are read first and that all of the different web 
browsers are working from a common baseline.

There are a bunch of different resets available to use, all of which have their own fortes. 
One of the most popular resets is Eric Meyer’s reset (http://meyerweb.com/eric/tools/
css/reset/), which has been adapted to include styles for the new HTML5 elements. 

If you are feeling a bit more adventurous, there is also Normalize.css (http://necolas.
github.io/normalize.css/), created by Nicolas Gallagher. Normalize.css focuses not on 

http://meyerweb.com/eric/tools/css/reset/
http://meyerweb.com/eric/tools/css/reset/
http://necolas.github.io/normalize.css/
http://necolas.github.io/normalize.css/


Lesson 1 · Building Your First Web Page  13

using a hard reset for all common elements, but instead on setting common styles for 
these elements. It requires a stronger understanding of CSS, as well as awareness of what 
you’d like your styles to be.

Cross-Browser Compatibility & Testing

As previously mentioned, different browsers render elements in different ways. It’s 
important to recognize the value in cross-browser compatibility and testing. Websites 
don’t need to look exactly the same in every browser, but they should be close. Which 
browsers you wish to support, and to what degree, is a decision you will need to make 
based on what is best for your website.

In all there are a handful of things to be on the lookout for when writing CSS. The good 
news is that anything is possible, and with a little patience we’ll figure it all out.

In Practice
Picking back up where we last left off on our conference website, let’s see if we can add in 
a bit of CSS.

1. Inside of our “styles-conference” folder, let’s create a new folder named “assets.” 
We’ll store all of the assets for our website, such as our style sheets, images, videos, 
and so forth, in this folder. For our style sheets, let’s go ahead and add another folder 
named “stylesheets” inside the “assets” folder.

2. Using our text editor, let’s create a new file named main.css and save it within the 
“stylesheets” folder we just created.

3. Looking at our index.html file in a web browser, we can see that the <h1> and <p> 
elements each have default CSS styles. Specifically, they each have a unique font size 
and spacing around them. Using Eric Meyer’s reset, we can tone down these styles, 
allowing each of them to be styled from the same base. To do this let’s head over 
to Eric’s website (http://meyerweb.com/eric/tools/css/reset/), copy his reset, and 
paste it at the top of our main.css file.

1. /* http://meyerweb.com/eric/tools/css/reset/

2. v2.0 | 20110126

continues

http://meyerweb.com/eric/tools/css/reset/


14 Learn to Code HTML & CSS

3. License: none (public domain)

4. */

5.

6. html, body, div, span, applet, object, iframe,

7. h1, h2, h3, h4, h5, h6, p, blockquote, pre,

8. a, abbr, acronym, address, big, cite, code,

9. del, dfn, em, img, ins, kbd, q, s, samp,

10. small, strike, strong, sub, sup, tt, var,

11. b, u, i, center,

12. dl, dt, dd, ol, ul, li,

13. fieldset, form, label, legend,

14. table, caption, tbody, tfoot, thead, tr, th, td,

15. article, aside, canvas, details, embed,

16. figure, figcaption, footer, header, hgroup,

17. menu, nav, output, ruby, section, summary,

18. time, mark, audio, video {

19. margin: 0;

20. padding: 0;

21. border: 0;

22. font-size: 100%;

23. font: inherit;

24. vertical-align: baseline;

25. }

26. /* HTML5 display-role reset for older browsers */

27. article, aside, details, figcaption, figure,

28. footer, header, hgroup, menu, nav, section {

29. display: block;

30. }

31. body {

32. line-height: 1;

33. }

34. ol, ul {

35. list-style: none;

36. }

37. blockquote, q {

38. quotes: none;

39. }

40. blockquote:before, blockquote:after,

41. q:before, q:after {



Lesson 1 · Building Your First Web Page  15

42. content: '';

43. content: none;

44. }

45. table {

46. border-collapse: collapse;

47. border-spacing: 0;

48. }

4. With our main.css file starting to take shape, let’s connect it to our index.html file. 
Opening the index.html file in our text editor, let’s add the <link> element within 
our <head> element, just after the <title> element.

5. Because we’ll be referencing a style sheet within the <link> element, let’s add the 
relation attribute, rel, with a value of stylesheet.

6. We also want to include a hyperlink reference, using the href attribute, to our main.
css file. Remember, our main.css file is saved within the “stylesheets” folder, which 
is inside the “assets” folder. Therefore, the href attribute value, which is the path to 
our main.css file, needs to be assets/stylesheets/main.css.

1. <head>

2. <meta charset="utf-8">

3. <title>Styles Conference</title>

4. <link rel="stylesheet" href="assets/stylesheets/main.css">

5. </head>

Time to check out our work and see if our HTML and CSS are getting along. Now opening 
our index.html file (or refreshing the page if it’s already opened) within a web browser 
should show slightly different results than before. Currently our website should look like 
Figure 1.6.

Figure 1.6 Our Styles Conference website with a CSS reset

The source code for the exercises within this lesson can be found at  
http://learn.shayhowe.com/html-css/building-your-first-web-page.

http://learn.shayhowe.com/html-css/building-your-first-web-page


16 Learn to Code HTML & CSS

Summary
So far, so good! We’ve taken a few big steps in this lesson. 

Just think, you now know the basics of HTML and CSS. As we continue and you spend 
more time writing HTML and CSS, you’ll become much more comfortable with the two 
languages.

To recap, so far we’ve covered the following:

• The difference between HTML and CSS

• Getting acquainted with HTML elements, tags, and attributes

• Setting up the structure of your first web page

• Getting acquainted with CSS selectors, properties, and values

• Working with CSS selectors

• Referencing CSS in your HTML

• The value of CSS resets

Now let’s take a closer look at HTML and learn a little about semantics.



Lesson 2

Getting to Know HTML

With our introduction to HTML and CSS complete, it’s time  

to dig a little deeper into HTML and examine the different  

components that make up this language.

In order to start building websites, we need to learn a little 

about which HTML elements are best used to display different 

types of content. It’s also important to understand how elements 

are visually displayed on a web page, as well as what different 

elements mean semantically.

Using the proper element for the job goes a long way, and we’ll 

want to make well-informed decisions in the process.



18 Learn to Code HTML & CSS

Semantics Overview
So what exactly are semantics? Semantics within HTML is the practice of giving content  
on the page meaning and structure by using the proper element. Semantic code describes 
the value of content on a page, regardless of the style or appearance of that content. There 
are several benefits to using semantic elements, including enabling computers, screen 
readers, search engines, and other devices to adequately read and understand the con-
tent on a web page. Additionally, semantic HTML is easier to manage and work with, as it 
shows clearly what each piece of content is about.

Moving forward, as new elements are introduced, we’ll talk about what those elements 
actually mean and the type of content they best represent. Before we do that, though, 
let’s look at two elements—<div>s and <span>s—that actually don’t hold any semantic 
value. They exist for styling purposes only. 

Identifying Divisions & Spans
Divisions, or <div>s, and <span>s are HTML elements that act as containers solely for 
styling purposes. As generic containers, they do not come with any overarching meaning  
or semantic value. Paragraphs are semantic in that content wrapped within a <p> element 
is known and understood as a paragraph. <div>s and <span>s do not hold any such 
meaning and are simply containers. 

Block vs. Inline Elements

Most elements are either block- or inline-level elements. What’s the difference?

Block-level elements begin on a new line, stacking one on top of the other, and occupy 
any available width. Block-level elements may be nested inside one another and may 
wrap inline-level elements. We’ll most commonly see block-level elements used for 
larger pieces of content, such as paragraphs.

Inline-level elements do not begin on a new line. They fall into the normal flow of a  
document, lining up one after the other, and only maintain the width of their content. 
Inline-level elements may be nested inside one another; however, they cannot wrap 
block-level elements. We’ll usually see inline-level elements with smaller pieces of  
content, such as a few words.



Lesson 2 · Getting to Know HTML  19

Both <div>s and <span>s, however, are extremely valuable when building a website in 
that they give us the ability to apply targeted styles to a contained set of content.

A <div> is a block-level element that is commonly used to identify large groupings of 
content, and which helps to build a web page’s layout and design. A <span>, on the other 
hand, is an inline-level element commonly used to identify smaller groupings of text 
within a block-level element.

We’ll commonly see <div>s and <span>s with class or id attributes for styling purposes. 
Choosing a class or id attribute value, or name, requires a bit of care. We want to choose a  
value that refers to the content of an element, not necessarily the appearance of an element.

For example, if we have a <div> with an orange background that contains social media 
links, our first thought might be to give the <div> a class value of orange. What happens 
if that orange background is later changed to blue? Having a class value of orange no 
longer makes sense. A more sensible choice for a class value would be social, as it 
pertains to the contents of the <div>, not the style.

1. <!-- Division -->

2. <div class="social">

3. <p>I may be found on...</p>

4. <p>Additionally, I have a profile on...</p>

5. </div>

6.

7. <!-- Span -->

8. <p>Soon we'll be <span class="tooltip">writing HTML</span> with 

the best of them.</p>

Comments within HTML & CSS

The previous code includes exclamation points within the HTML, and that’s all right. 
Those are not elements, those are comments. 

HTML and CSS give us the ability to leave comments within our code, and any content 
wrapped within a comment will not be displayed on the web page. Comments help keep 
our files organized, allow us to set reminders, and provide a way for us to more effec-
tively manage our code. Comments become especially useful when there are multiple 
people working on the same files.

HTML comments start with <!-- and end with -->. CSS comments start with /*  
and end with */.



20 Learn to Code HTML & CSS

Using Text-Based Elements
Many different forms of media and content exist online; however, text is predominant. 
Accordingly, there are a number of different elements for displaying text on a web page. 
For now we’ll focus on the more popular elements, including headings, paragraphs, bold 
text to show importance, and italics for emphasis. Later, within Lesson 6, “Working with 
Typography,” we’ll take a closer look at how to style text.

Headings
Headings are block-level elements, and they come in six different rankings, <h1> through 
<h6>. Headings help to quickly break up content and establish hierarchy, and they are key 
identifiers for users reading a page. They also help search engines to index and determine 
the content on a page.

Headings should be used in an order that is relevant to the content of a page. The primary 
heading of a page or section should be marked up with an <h1> element, and subsequent 
headings should use <h2>, <h3>, <h4>, <h5>, 
and <h6> elements as necessary.

Each heading level should be used where it is 
semantically valued, and should not be used to 
make text bold or big—there are other, better 
ways to do that.

Here is an example of HTML for all the differ-
ent heading levels and the resulting display on 
a web page (see Figure 2.1).

1. <h1>Heading Level 1</h1>

2. <h2>Heading Level 2</h2>

3. <h3>Heading Level 3</h3>

4. <h4>Heading Level 4</h4>

5. <h5>Heading Level 5</h5>

6. <h6>Heading Level 6</h6>
Figure 2.1 Various heading levels as  
displayed on a web page



Lesson 2 · Getting to Know HTML  21

Paragraphs
Headings are often followed by supporting paragraphs. Paragraphs are defined using the 
<p> block-level element. Paragraphs can appear one after the other, adding information 
to a page as desired. Here is example of how to set up paragraphs (see Figure 2.2).

1. <p>Steve Jobs was a co-founder and longtime chief executive 

officer at Apple. On June 12, 2005, Steve gave the commencement 

address at Stanford University.</p>

2.

3. <p>In his address Steve urged graduates to follow their dreams and, 

despite any setbacks, to never give up&ndash;advice which he 

sincerely took to heart.</p>

Figure 2.2 Two paragraphs as displayed on a web page

Bold Text with Strong
To make text bold and place a strong importance on it, we’ll use the <strong> inline- 
level element. There are two elements that will bold text for us: the <strong> and <b> 
elements. It is important to understand the semantic difference between the two.

The <strong> element is semantically used to give strong importance to text, and is thus 
the most popular option for bolding text. The <b> element, on the other hand, semantically 
means to stylistically offset text, which isn’t always the best choice for text deserving 
prominent attention. We have to gauge the significance of the text we wish to set as bold 
and to choose an element accordingly.



22 Learn to Code HTML & CSS

Here are the two HTML options for creating bold text in action (see Figure 2.3):

1. <!-- Strong importance -->

2. <p><strong>Caution:</strong> Falling rocks.</p>

3.

4. <!-- Stylistically offset -->

5. <p>This recipe calls for <b>bacon</b> and <b>baconnaise</b>.</p>

Figure 2.3 Using the <strong> and <b> elements to bold text properly, the word  
“Caution:” is semantically interpreted as having strong importance, and the words  
“bacon” and “baconnaise” are semantically interpreted as being stylistically offset

Italicize Text with Emphasis
To italicize text, thereby placing emphasis on it, we’ll use the <em> inline-level element. 
As with the elements for bold text, there are two different elements that will italicize text, 
each with a slightly different semantic meaning.

The <em> element is used semantically to place a stressed emphasis on text; it is thus 
the most popular option for italicizing text. The other option, the <i> element, is used 
semantically to convey text in an alternative voice or tone, almost as if it were placed in 
quotation marks. Again, we will need to gauge the significance of the text we want to 
italicize and choose an element accordingly.

Here’s the HTML code for italicizing text (see  
Figure 2.4):

1. <!-- Stressed emphasis -->

2. <p>I <em>love</em> Chicago!</p>

3.

4. <!-- Alternative voice or tone -->

5. <p>The name <i>Shay</i> means a gift.</p>

Figure 2.4 Using the <em> and <i> 
elements to italicize text properly, 
the word “love” is semantically inter-
preted as having stressed emphasis, 
and the word “Shay” is semantically 
interpreted as having an alternative 
voice or tone



Lesson 2 · Getting to Know HTML  23

These text-level elements are quite handy for bringing our content to life. In addition 
to these, there are structurally based elements. Whereas text-based elements identify 
headings and paragraphs, structural elements identify groupings of content such as 
headers, articles, footers, and so forth. Let’s take a look.

Building Structure
For the longest time the structure of a web page was built using divisions. The problem 
was that divisions provide no semantic value, and it was fairly difficult to determine  
the intention of these divisions. Fortunately HTML5 introduced new structurally based 
elements, including the <header>, <nav>, <article>, <section>, <aside>, and 
<footer> elements.

All of these new elements are intended to give meaning to the organization of our pages 
and improve our structural semantics. They are all block-level elements and do not have 
any implied position or style. Additionally, all of these elements may be used multiple 
times per page, so long as each use reflects the proper semantic meaning.

Let’s roll up our sleeves and take a closer look.

<header>

<footer>

<section>

<article>

<aside>

Figure 2.5 One possible example of HTML5 structural elements  
giving meaning to the organization of our pages



24 Learn to Code HTML & CSS

Header
The <header> element, like it sounds, is used to identify the top of a page, article, section, 
or other segment of a page. In general, the <header> element may include a heading, 
introductory text, and even navigation.

1. <header>...</header>

<header> vs. <head> vs. <h1> through <h6> Elements

It is easy to confuse the <header> element with the <head> element or the heading 
elements, <h1> through <h6>. They all have different semantic meanings and should be 
used according to their meanings. For reference…

The <header> element is a structural element that outlines the heading of a segment of 
a page. It falls within the <body> element.

The <head> element is not displayed on a page and is used to outline metadata, includ-
ing the document title, and links to external files. It falls directly within the <html> 
element.

Heading elements, <h1> through <h6>, are used to designate multiple levels of text 
headings throughout a page.

Navigation
The <nav> element identifies a section of major navigational links on a page. The <nav> 
element should be reserved for primary navigation sections only, such as global navigation, 
a table of contents, previous/next links, or other noteworthy groups of navigational links.

Most commonly, links included within the <nav> element will link to other pages within 
the same website or to parts of the same web page. Miscellaneous one-off links should 
not be wrapped within the <nav> element; they should use the anchor element, <a>, and 
the anchor element alone.

1. <nav>...</nav>



Lesson 2 · Getting to Know HTML  25

Article
The <article> element is used to identify a section of independent, self-contained 
content that may be independently distributed or reused. We’ll often use the <article> 
element to mark up blog posts, newspaper articles, user-submitted content, and the like.

When deciding whether to use the <article> element, we must determine if the content 
within the element could be replicated elsewhere without any confusion. If the content 
within the <article> element were removed from the context of the page and placed, 
for example, within an email or printed work, that content should still make sense.

1. <article>...</article>

Section
The <section> element is used to identify a thematic grouping of content, which gener-
ally, but not always, includes a heading. The grouping of content within the <section> 
element may be generic in nature, but it’s useful to identify all of the content as related.

The <section> element is commonly used to break up and provide hierarchy to a page.

1. <section>...</section>

Deciding Between <article>, <section>, or <div> Elements

At times it becomes fairly difficult to decide which element—<article>, <section>, or 
<div>—is the best element for the job based on its semantic meaning. The trick here, as 
with every semantic decision, is to look at the content.

Both the <article> and <section> elements contribute to a document’s structure and 
help to outline a document. If the content is being grouped solely for styling purposes 
and doesn’t provide value to the outline of a document, use the <div> element.

If the content adds to the document outline and it can be independently redistributed or 
syndicated, use the <article> element.

If the content adds to the document outline and represents a thematic group of content, 
use the <section> element.



26 Learn to Code HTML & CSS

Aside
The <aside> element holds content, such as sidebars, inserts, or brief explanations, that 
is tangentially related to the content surrounding it. When used within an <article> 
element, for example, the <aside> element may identify content related to the author of 
the article.

We may instinctively think of an <aside> element as an element that appears off to the 
left or right side of a page. We have to remember, though, that all of the structural ele-
ments, including the <aside> element, are block-level elements and as such will appear 
on a new line, occupying the full available width of the page or of the element they are 
nested within, also known as their parent element.

1. <aside>...</aside>

We’ll discuss how to change the position of an element, perhaps placing it to the right or 
left of a group of content, in Lesson 5, “Positioning Content.”

Footer
The <footer> element identifies the closing or end of a page, article, section, or other 
segment of a page. Generally the <footer> element is found at the bottom of its par-
ent. Content within the <footer> element should be relative information and should not 
diverge from the document or section it is included within.

1. <footer>...</footer>

With structural elements and text-based elements under our belts, our HTML knowledge 
is really starting to come together. Now is a good time to revisit our Styles Conference 
website and see if we can provide it with a little better structure.

In Practice
Currently, our Styles Conference website lacks real structure—and content for that matter. 
Let’s take some time to flesh out our home page a bit.



Lesson 2 · Getting to Know HTML  27

1. Using our existing index.html file, let’s add in a <header> element. Our <header> 
element should include our existing <h1> element; let’s also add an <h3> element as 
a tagline to support our <h1> element.

1. <header>

2. <h1>Styles Conference</h1>

3. <h3>August 24&ndash;26th &mdash; Chicago, IL</h3>

4. </header>

2. After our <header> element, let’s add a new group of content, using the <section> 
element, that introduces our conference. We’ll begin this section with a new <h2> 
element and end it with our existing paragraph.

1. <section>

2. <h2>Dedicated to the Craft of Building Websites</h2>

3. <p>Every year the brightest web designers and front-end 

  developers descend on Chicago to discuss the latest technologies. 

  Join us this August!</p>

4. </section>

3. Following the introduction to our conference, let’s add another group of content that 
teases a few of the pages we’ll be adding, specifically the Speakers, Schedule, and 
Venue pages. Each of the pages we’re teasing should also reside within its own sec-
tion and include supporting text.

We’ll group all of the teasers inside a <section> element, and each individual teaser 
will be wrapped within a <section> element as well. In all, we’ll have three <section> 
elements inside another <section> element, which is all right.

1. <section>

2.

3. <section>

4. <h5>Speakers</h5>

5. <h3>World-Class Speakers</h3>

6. <p>Joining us from all around the world are over twenty 

    fantastic speakers, here to share their stories.</p>

7. </section>

8.

9. ...

10.

11. </section>



28 Learn to Code HTML & CSS

4. Lastly, let’s add our copyright within the <footer> element at the end of our page.  
To do so let’s use the <small> element, which semantically represents side comments 
and small print—perfect for our copyright.

Generally, content within the <small> element will be rendered as, well, small, but 
our CSS reset will prevent that from happening.

1. <footer>

2. <small>&copy; Styles Conference</small>

3. </footer>

Now we can see our home page beginning to come to life, as in Figure 2.6.

Figure 2.6 Our home page after adding more content and structure

Encoding Special Characters

The <h3> element within our <header> element, as well as the <small> element within 
our <footer> element, has some interesting things going on. Specifically, a few special 
characters within these elements are being encoded.

Special characters include various punctuation marks, accented letters, and symbols. 
When typed directly into HTML, they can be misunderstood or mistaken for the wrong 
character; thus they need to be encoded.

Each encoded character will begin with an ampersand, &, and end with a semicolon, ;. 
What falls between the ampersand and semicolon is a character’s unique encoding, be it 
a name or numeric encoding.

For example, we would encode the word “resumé” as resum&eacute;. Within our 
header we have encoded both en and em dashes, and within our footer we have encoded 
the copyright symbol. For reference, a long list of character encodings may be found at 
http://copypastecharacter.com.

http://copypastecharacter.com


Lesson 2 · Getting to Know HTML  29

With our home page taking shape, let’s take a look at creating hyperlinks so that we may 
add additional pages and build out the rest of our website.

Creating Hyperlinks
Along with text, one of the core components of the Internet is the hyperlink, which provides 
the ability to link from one web page or resource to another. Hyperlinks are established 
using the anchor, <a>, inline-level element. In order to create a link from one page (or 
resource) to another, the href attribute, known as a hyperlink reference, is required. The 
href attribute value identifies the destination of the link.

For example, clicking the text “Shay,” which is wrapped inside the anchor element with 
the href attribute value of http://shayhowe.com, will take users to my website (see 
Figure 2.7).

1. <a href="http://shayhowe.com">Shay</a>

Figure 2.7 “Shay” used as hyperlink text 
referencing http://shayhowe.com

Wrapping Block-Level Elements with Anchors

By nature the anchor element, <a>, is an inline element, and, according to web standards, 
inline-level elements may not wrap block-level elements. With the introduction of HTML5, 
however, anchor elements specifically have permission to wrap either block-, inline-, or 
any other level elements. This is a break from the standard convention, but it’s permissible 
in order to enable entire blocks of content on a page to become links.

http://shayhowe.com


30 Learn to Code HTML & CSS

Relative & Absolute Paths
The two most common types of links are links to other pages of the same website and 
links to other websites. These links are identified by their href attribute values, also 
known as their paths.

Links pointing to other pages of the same website will have a relative path, which does not 
include the domain (.com, .org, .edu, etc.) in the href attribute value. Because the link is 
pointing to another page on the same website, the href attribute value needs to include 
only the filename of the page being linked to: about.html, for example.

Should the page being linked to reside within a different directory, or folder, the href 
attribute value needs to reflect this as well. Say the about.html page resides within the 
pages directory; the relative path would then be pages/about.html.

Linking to other websites outside of the current one requires an absolute path, where the 
href attribute value must include the full domain. A link to Google would need the href 
attribute value of http://google.com, starting with http and including the domain, 
.com in this case.

Here clicking on the text “About” will open the about.html page inside our browser. 
Clicking the text “Google,” on the other hand, will open http://www.google.com/ 
within our browser.

1. <!-- Relative Path -->

2. <a href="/about.html">About</a>

3.

4. <!-- Absolute Path -->

5. <a href="http://www.google.com/">Google</a>

Linking to an Email Address
Occasionally we may want to create a hyperlink to our email address—for example, 
hyperlink text that says “Email Me,” which when clicked opens a user’s default email 
client and pre-populates part of an email. At a minimum the email address to which the 
email is being sent is populated; other information such as a subject line and body text 
may also be included.

http://google.com
http://www.google.com/


Lesson 2 · Getting to Know HTML  31

To create an email link, the href attribute value needs to start with mailto: followed 
by the email address to which the email should be sent. To create an email link to shay@
awesome.com, for example, the href attribute value would be mailto:shay@awesome.com.

Additionally, subject, body text, and other information for the email may be populated. To 
add a subject line, we’ll include the subject= parameter after the email address. The first 
parameter following the email address must begin with a question mark, ?, to bind it to 
the hyperlink path. Multiple words within a subject line require that spaces be encoded 
using %20.

Adding body text works in the same way as adding the subject, this time using the body= 
parameter in the href attribute value. Because we are binding one parameter to another 
we need to use the ampersand, &, to separate the two. As with the subject, spaces must 
be encoded using %20, and line breaks must be encoded using %0A.

Altogether, a link to shay@awesome.com with the subject of “Reaching Out” and body text 
of “How are you” would require an href attribute value of 

mailto:shay@awesome.com?subject=Reaching20%Out&body=How%20are%20you

Here’s the full breakdown:

1. <a href="mailto:shay@awesome.com?subject=Reaching20%Out&body=

How%20are%20you">Email Me</a>

Opening Links in a New Window
One feature available with hyperlinks is the ability to determine where a link opens when 
clicked. Typically, links open in the same window from which they are clicked; however, 
links may also be opened in new windows.

To trigger the action of opening a link in a new window, use the target attribute with a 
value of _blank. The target attribute determines exactly where the link will be dis-
played, and the _blank value specifies a new window.

To open http://shayhowe.com/ in a new window, the code would look like this:

1. <a href="http://shayhowe.com/" target="_blank">Shay Howe</a>

http://shayhowe.com/


32 Learn to Code HTML & CSS

Linking to Parts of the Same Page
Periodically we’ll see hyperlinks that link to part of the same page the link appears on.  
A common example of these same-page links are “Back to top” links that return a user  
to the top of a page.

We can create an on-page link by first setting an ID attribute on the element we wish to 
link to, then using the value of that ID attribute within an anchor element’s href attribute.

Using the “Back to top” link as an example, we can place an ID attribute value of top on 
the <body> element. Now we can create an anchor element with an href attribute value 
of #top, pound sign and all, to link to the beginning of the <body> element.

Our code for this same-page link would look like the following:

1. <body id="top">

2. ...

3. <a href="#top">Back to top</a>

4. ...

5. </body>

Hyperlinks are incredibly useful and have revolutionized how we use the Internet. So far 
we’ve covered how to link to other pages or websites, as well as how to create email links 
and links to parts of the same page. Before we go any further, let’s create some links of 
our own.

In Practice
It’s time to take Styles Conference from a single-page website to a full-blown website 
with multiple pages, all of which will be linked together using hyperlinks.

1. We’ll begin by making our “Styles Conference” text inside the <h1> element within 
our <header> element link to the index.html page.

Because we are already on the index.html page, this may seem a little odd—and 
rightfully so—but as the header is replicated on other pages, linking back to the 
home page will make sense.

1. <h1>

2. <a href="index.html">Styles Conference</a>

3. </h1>



Lesson 2 · Getting to Know HTML  33

2. In order to navigate across all of the different pages, we’re going add in a navigation 
menu, using the <nav> element, within our <header> element. We’ll be creating 
Speakers, Schedule, Venue, and Register pages to go with our home page, so we 
should create links for all of them.

1. <header>

2.

3. ...

4.

5. <nav>

6. <a href="index.html">Home</a>

7. <a href="speakers.html">Speakers</a>

8. <a href="schedule.html">Schedule</a>

9. <a href="venue.html">Venue</a>

10. <a href="register.html">Register</a>

11. </nav>

12.

13. </header>

3. Let’s also add the same navigation menu from our <header> element to our 
<footer> element for convenience.

1. <footer>

2.

3. ...

4.

5. <nav>

6. <a href="index.html">Home</a>

7. <a href="speakers.html">Speakers</a>

8. <a href="schedule.html">Schedule</a>

9. <a href="venue.html">Venue</a>

10. <a href="register.html">Register</a>

11. </nav>

12.

13. </footer>



34 Learn to Code HTML & CSS

4. Within the <section> element that introduces our conference, just below our 
header, we should also include a link to register for the conference. Placing a link 
below the paragraph will work perfectly.

1. <section>

2.

3. ...

4.

5. <a href="register.html">Register Now</a>

6.

7. </section>

5. We can’t forget to add links to all of the sections teasing our other pages. Inside each 
section, let’s wrap both the <h3> and <h5> elements within an anchor element linking 
to the proper page.

We’ll want to make sure we do this for every section accordingly.

1. <section>

2.

3. <section>

4. <a href="speakers.html">

5. <h5>Speakers</h5>

6. <h3>World-Class Speakers</h3>

7. </a>

8. <p>Joining us from all around the world are over twenty

    fantastic speakers, here to share their stories.</p>

9. </section>

10.

11. ...

12.

13. </section>

6. Now we need to create a handful of new pages. Let’s create speakers.html,  
schedule.html, venue.html, and register.html files. These files should live 
within the same folder as the index.html file, and, because we’re keeping them 
inside the same folder, all of our links should work as expected.

To ensure that all of our pages look the same, let’s make sure that all of these new 
files have the same document structure and <header> and <footer> elements as 
the index.html file.



Lesson 2 · Getting to Know HTML  35

It’s official, we’re no longer working with a single page but indeed a full website. Our home 
page should now look like Figure 2.8.

Figure 2.8 Our home page after all of the different links and navigation have been added

The source code for the exercises within this lesson can be found at  
http://learn.shayhowe.com/html-css/getting-to-know-html.

Summary
Semantics, as discussed within this lesson, are essential for providing our HTML with 
structure and meaning. Moving forward we’ll periodically introduce new elements, all of 
which will come with their own semantic meaning. It is the meaning of all of these elements 
that will provide our content with the most value.

Once again, in this lesson we covered the following:

• What semantics are and why they are important

• <div>s and <spans>s, and the difference between block- and inline-level elements

• Which text-based elements best represent the content of a page

• The HTML5 structural elements and how to define the structure and organization of 
our content and page

• How to use hyperlinks to navigate between web pages or websites

Hopefully you’re starting to feel pretty good about HTML. There is still quite a bit to learn, 
but the foundation is in place. Next up, we’ll take a deeper look into CSS.

http://learn.shayhowe.com/html-css/getting-to-know-html


Lesson 3

Getting to Know CSS

CSS is a complex language that packs quite a bit of power.  

It allows us to add layout and design to our pages, and it allows 

us to share those styles from element to element and page to 

page. Before we can unlock all of its features, though, there are  

a few aspects of the language we must fully understand.

First, it’s crucial to know exactly how styles are rendered.  

Specifically, we’ll need to know how different types of selectors 

work and how the order of those selectors can affect how  

our styles are rendered. We’ll also want to understand a few 

common property values that continually appear within CSS, 

particularly those that deal with color and length.

Let’s look under the hood of CSS to see exactly what is going on.



Lesson 3 · Getting to Know CSS  37

The Cascade
We’ll begin breaking down exactly how styles are rendered by looking at what is known 
as the cascade and studying a few examples of the cascade in action. Within CSS, all 
styles cascade from the top of a style sheet to the bottom, allowing different styles to be 
added or overwritten as the style sheet progresses.

For example, say we select all paragraph elements at the top of our style sheet and set 
their background color to orange and their font size to 24 pixels. Then towards the bottom 
of our style sheet, we select all paragraph elements again and set their background color 
to green, as seen here.

1. p {

2. background: orange;

3. font-size: 24px;

4. }

5. p {

6. background: green;

7. }

Because the paragraph selector that sets the background color to green comes after the 
paragraph selector that sets the background color to orange, it will take precedence in 
the cascade. All of the paragraphs will appear with a green background. The font size will 
remain 24 pixels because the second paragraph selector didn’t identify a new font size.

Cascading Properties
The cascade also works with properties inside individual selectors. Again, for example, 
say we select all the paragraph elements and set their background color to orange. Then 
directly below the orange background property and value declaration, we add another 
property and value declaration setting the background color to green, as seen here.

1. p {

2. background: orange;

3. background: green;

4. }



38 Learn to Code HTML & CSS

Because the green background color declaration comes after the orange background 
color declaration, it will overrule the orange background, and, as before, our paragraphs 
will appear with a green background.

All styles will cascade from the top of our style sheet to the bottom of our style sheet. 
There are, however, times where the cascade doesn’t play so nicely. Those times occur 
when different types of selectors are used and the specificity of those selectors breaks 
the cascade. Let’s take a look.

Calculating Specificity
Every selector in CSS has a specificity weight. A selector’s specificity weight, along with 
its placement in the cascade, identifies how its styles will be rendered.

In Lesson 1, “Building Your First Web Page,” we talked about three different types of  
selectors: the type, class, and ID selectors. Each of these selectors has a different speci-
ficity weight.

The type selector has the lowest specificity weight and holds a point value of 0-0-1. The 
class selector has a medium specificity weight and holds a point value of 0-1-0. Lastly,  
the ID selector has a high specificity weight and holds a point value of 1-0-0. As we can 
see, specificity points are calculated using three columns. The first column counts ID selectors, 
the second column counts class selectors, and the third column counts type selectors.

What’s important to note here is that the ID selector has a higher specificity weight than the 
class selector, and the class selector has a higher specificity weight than the type selector.

Specificity Points

Specificity points are intentionally hyphenated, as their values are not computed from a 
base of 10. Class selectors do not hold a point value of 10, and ID selectors do not hold  
a point value of 100. Instead, these points should be read as 0-1-0 and 1-0-0 respec-
tively. We’ll take a closer look at why these point values are hyphenated shortly, when 
we combine selectors.



Lesson 3 · Getting to Know CSS  39

The higher the specificity weight of a selector, the more superiority the selector is given 
when a styling conflict occurs. For example, if a paragraph element is selected using a 
type selector in one place and an ID selector in another, the ID selector will take prece-
dence over the type selector regardless of where the ID selector appears in the cascade.

HTML

1. <p id="food">...</p>

CSS

1. #food {

2. background: green;

3. }

4. p {

5. background: orange;

6. }

Here we have a paragraph element with an ID attribute value of food. Within our CSS, 
that paragraph is being selected by two different kinds of selectors: one type selector and 
one ID selector. Although the type selector comes after the ID selector in the cascade, 
the ID selector takes precedence over the type selector because it has a higher specificity 
weight; consequently the paragraph will appear with a green background.

The specificity weights of different types of selectors are incredibly important to remem-
ber. At times styles may not appear on elements as intended, and chances are the 
specificity weights of our selectors are breaking the cascade, therefore our styles are not 
appearing properly.

Understanding how the cascade and specificity work is a huge hurdle, and we’ll continue 
to cover this topic. For now, let’s look at how to be a little more particular and intentional 
with our selectors by combining them. Keep in mind that as we combine selectors, we’ll 
also be changing their specificity.



40 Learn to Code HTML & CSS

Combining Selectors
So far we’ve looked at how to use different types of selectors individually, but we also 
need to know how to use these selectors together. By combining selectors we can be 
more specific about which element or group of elements we’d like to select.

For example, say we want to select all paragraph elements that reside within an element 
with a class attribute value of hotdog and set their background color to brown. However, if 
one of those paragraphs happens to have the class attribute value of mustard, we want 
to set its background color to yellow. Our HTML and CSS may look like the following:

HTML

1. <div class="hotdog">

2. <p>...</p>

3. <p>...</p>

4. <p class="mustard">...</p>

5. </div>

CSS

1. .hotdog p {

2. background: brown;

3. }

4. .hotdog p.mustard {

5. background: yellow;

6. }

When selectors are combined they should be read from right to left. The selector farthest 
to the right, directly before the opening curly bracket, is known as the key selector. The 
key selector identifies exactly which element the styles will be applied to. Any selector to 
the left of the key selector will serve as a prequalifier.

The first combined selector above, .hotdog p, includes two selectors: a class and a type 
selector. These two selectors are separated by a single space. The key selector is a type 
selector targeting paragraph elements. And because this type selector is prequalified 
with a class selector of hotdog, the full combined selector will only select paragraph ele-
ments that reside within an element with a class attribute value of hotdog.



Lesson 3 · Getting to Know CSS  41

The second selector above, .hotdog p.mustard, includes three selectors: two class 
selectors and one type selector. The only difference between the second selector and the 
first selector is the addition of the class selector of mustard to the end of the paragraph 
type selector. Because the new class selector, mustard, falls all the way to the right of the 
combined selector, it is the key selector, and all of the individual selectors coming before 
it are now prequalifiers.

Spaces Within Selectors

Within the previous combined selector, .hotdog p.mustard, there is a space between 
the hotdog class selector and the paragraph type selector but not between the para-
graph type selector and the mustard class selector. The use, and omission, of spaces 
makes a large difference in selectors.

Since there isn’t a space between the paragraph type selector and the mustard class 
selector that means the selector will only select paragraph elements with the class of 
mustard. If the paragraph type selector was removed, and the mustard class selector 
had spaces on both sides of it, it would select any element with the class of mustard,  
not just paragraphs.

The best practice is to not prefix a class selector with a type selector. Generally we want  
to select any element with a given class, not just one type of element. And following this 
best practice, our new combined selector would be better as .hotdog .mustard.

Reading the combined selector from right to left, it is targeting paragraphs with a class 
attribute value of mustard that reside within an element with the class attribute value of 
hotdog.

Different types of selectors can be combined to target any given element on a page. As 
we continue to write different combined selectors, we’ll see their powers come to life. 
Before we do that, though, let’s take a look at how combining selectors changes a selec-
tor’s specificity weight.



42 Learn to Code HTML & CSS

Specificity Within Combined Selectors
When selectors are combined, so are the specificity weights of the individual selectors. 
These combined specificity weights can be calculated by counting each different type of 
selector within a combined selector.

Looking at our combined selectors from before, the first selector, .hotdog p, had both 
a class selector and a type selector. Knowing that the point value of a class selector is 
0-1-0 and the point value of a type selector is 0-0-1, the total combined point value 
would be 0-1-1, found by adding up each kind of selector.

The second selector, .hotdog p.mustard, had two class selectors and one type selector. 
Combined, the selector has a specificity point value of 0-2-1. The 0 in the first column is 
for zero ID selectors, the 2 in the second column is for two class selectors, and the 1 in 
the last column is for one type selector.

Comparing the two selectors, the second selector, with its two classes, has a noticeably  
higher specificity weight and point value. As such it will take precedence within the 
cascade. If we were to flip the order of these selectors within our style sheet, placing the 
higher-weighted selector above the lower-weighted selector as shown here, the appear-
ance of their styles would not be affected due to each selector’s specificity weight.

1. .hotdog p.mustard {

2. background: yellow;

3. }

4. .hotdog p {

5. background: brown;

6. }

In general we want to always keep an eye on the specificity weights of our selectors.  
The higher our specificity weights rise, the more likely our cascade is to break.

Layering Styles with Multiple Classes
One way to keep the specificity weights of our selectors low is to be as modular as pos-
sible, sharing similar styles from element to element. And one way to be as modular as 
possible is to layer on different styles by using multiple classes.



Lesson 3 · Getting to Know CSS  43

Elements within HTML can have more than one class attribute value so long as each 
value is space separated. With that, we can place certain styles on all elements of one 
sort while placing other styles only on specific elements of that sort.

We can tie styles we want to continually reuse to one class and layer on additional styles 
from another class.

Let’s take a look at buttons, for example. Say we want all of our buttons to have a font 
size of 16 pixels, but we want the background color of our buttons to vary depending on 
where the buttons are used. We can create a few classes and layer them on an element 
as necessary to apply the desired styles.

HTML

1. <a class="btn btn-danger">...</a>

2.

3. <a class="btn btn-success">...</a>

CSS

1. .btn {

2. font-size: 16px;

3. }

4. .btn-danger {

5. background: red;

6. }

7. .btn-success {

8. background: green;

9. }

Here you can see two anchor elements, both with multiple class attribute values. The 
first class, btn, is used to apply a font size of 16 pixels to each of the elements. Then, the 
first anchor element uses an additional class of btn-danger to apply a red background 
color while the second anchor element uses an additional class of btn-success to apply 
a green background color. Our styles here are clean and modular.

Using multiple classes, we can layer on as many styles as we wish, keeping our code lean 
and our specificity weights low. Much like understanding the cascade and calculating 
specificity, this is a practice that will take time to fully absorb, but we’ll get better with 
each lesson.



44 Learn to Code HTML & CSS

Common CSS Property Values
We’ve used a handful of common CSS property values already, such as the keyword color 
values of red and green. You may not have thought too much about them; that’s okay. 
We’re going to take time now to go over some previously used property values as well as 
to explore some of the more common property values that we’ll soon be using.

Specifically, we’ll look at property values that relate to colors and length measurements.

Colors
All color values within CSS are defined on an sRGB (or standard red, green, and blue) 
color space. Colors within this space are formed by mixing red, green, and blue color 
channels together, mirroring the way that televisions and monitors generate all the dif-
ferent colors they display. By mixing different levels of red, green, and blue, we can create 
millions of colors—and find nearly any color we’d like.

Currently there are four primary ways to represent sRGB colors within CSS: keywords, 
hexadecimal notation, and RGB and HSL values.

Keyword Colors

Keyword color values are names (such as red, green, or blue) that map to a given  
color. These keyword names and their corresponding colors are determined by the CSS 
specification. Most common colors, along with a few oddities, have keyword names.  
A complete list of these keyword names can be found within the CSS specification 
(http://www.w3.org/TR/css3-color/), and a few of the more common keyword color 
values are listed in Figure 3.1.

Here we are applying a maroon background to any element with the task class attribute 
value and a yellow background to any element with the count class attribute value.

1. .task {

2. background: maroon;

3. }

4. .count {

5. background: yellow;

6. }

While keyword color values are simple in nature, they provide limited options and thus 
are not the most popular color value choice.

http://www.w3.org/TR/css3-color/


Lesson 3 · Getting to Know CSS  45

Figure 3.1 Some of the most common keyword color values, along with their hexadecimal, RGB, and 
HSL equivalents

NAME HEX VALUES RGB VALUES HSL VALUES

black #000000 rgb(0, 0, 0) hsl(0, 0%, 0%)

silver #c0c0c0 rgb(192, 192, 192) hsl(0, 0%, 75%)

gray #808080 rgb(128, 128, 128) hsl(0, 0%, 50%)

white #ffffff rgb(255, 255, 255) hsl(0, 100%, 100%)

maroon #800000 rgb(128, 0, 0) hsl(0, 100%, 25%)

red #ff0000 rgb(255, 0, 0) hsl(0, 100%, 50%)

purple #800080 rgb(128, 0, 128) hsl(300, 100%, 25%)

fuschia #ff00ff rgb(255, 0, 255) hsl(300, 100%, 50%)

green #008000 rgb(0, 128, 0) hsl(120, 100%, 25%)

olive #00ff00 rgb(0, 255, 0) hsl(120, 100%, 50%)

lime #808000 rgb(128, 128, 0) hsl(60, 100%, 25%)

yellow #ffff00 rgb(255, 255, 0) hsl(60, 100%, 50%)

navy #000080 rgb(0, 0, 128) hsl(240, 100%, 25%)

blue #0000ff rgb(0, 0, 255) hsl(240, 100%, 50%)

teal #008080 rgb(0, 128, 128) hsl(180, 100%, 25%)

aqua #00ffff rgb(0, 255, 255) hsl(180, 100%, 50%)



46 Learn to Code HTML & CSS

Hexadecimal Colors

Hexadecimal color values consist of a pound, or hash, #, followed by a three- or six-
character figure. The figures use the numbers 0 through 9 and the letters a through f,
upper or lower case. These values map to the red, green, and blue color channels.

In six-character notation, the first two characters represent the red channel, the third and
fourth characters represent the green channel, and the last two characters represent the
blue channel. In three-character notation, the first character represents the red channel,
the second character represents the green channel, and the last character represents the
blue channel.

If in six-character notation the first two characters are a matching pair, the third and
fourth characters are a matching pair, and the last two characters are a matching pair, the
six-character figure may be shortened to a three-character figure. To do this the repeated
character from each pair should be used once. For example, a shade of orange represented
by the hexadecimal color #ff6600 could also be written as #f60 (see Figure 3.2).

Figure 3.2 Six-character hexadecimal values may 
be written as three-character hexadecimal values 
when the red, green, and blue color channels each 
contain a repeating character

The character pairs are obtained by converting 0 through 255 into a base-16, or hexadeci-
mal, format. The math is a little tricky—and worthy of its own book—but it helps to know
that 0 equals black and F equals white.

The Millions of Hexadecimal Colors

There are millions of hexadecimal colors, over 16.7 million to be exact. Here’s how…

There are 16 options for every character in a hexadecimal color, 0 through 9 and A
through F. With the characters grouped in pairs, there are 256 color options per pair
(16 multiplied by 16, or 16 squared).

And with three groups of 256 color options we have a total of over 16.7 million colors
(256 multiplied by 256 multiplied by 256, or 256 cubed).



Lesson 3 · Getting to Know CSS  47

To create the same maroon and yellow background colors from before, we could replace 
the keyword color values with hexadecimal color values, as seen here.

1. .task {

2. background: #800;

3. }

4. .count {

5. background: #ffff00;

6. }

Hexadecimal color values have been around for a while, and they have become fairly 
popular because they offer a large number of color options. They are, however, a little 
difficult to work with, especially if you’re not too familiar with them. Fortunately Adobe 
has created Adobe Kuler (https://kuler.adobe.com/), a free application that provides a 
color wheel to help us find any color we want and its corresponding hexadecimal value. 
Additionally, most image editing applications, such as Adobe Photoshop, provide the 
capability to locate hexadecimal color values (see Figure 3.3).

Figure 3.3 The color picker tool within Adobe Photoshop displays the  
hexadecimal, RGB, and HSL color values

https://kuler.adobe.com/


48 Learn to Code HTML & CSS

RGB & RGBa Colors

RGB color values are stated using the rgb() function, which stands for red, green, and 
blue. The function accepts three comma-separated values, each of which is an integer 
from 0 to 255. A value of 0 would be pure black; a value of 255 would be pure white.

As we might expect, the first value within the rgb() function represents the red channel, 
the second value represents the green channel, and the third value represents the blue 
channel.

If we were to recreate the shade of orange from before as an RGB color value, it would be 
represented as rgb(255, 102, 0).

Also, using the same maroon and yellow background colors from before, we could 
replace the keyword or hexadecimal color values with RGB color values.

1. .task {

2. background: rgb(128, 0, 0);

3. }

4. .count {

5. background: rgb(255, 255, 0);

6. }

RGB color values may also include an alpha, or transparency, channel by using the 
rgba() function. The rgba() function requires a fourth value, which must be a number 
between 0 and 1, including decimals. A value of 0 creates a fully transparent color, mean-
ing it would be invisible, and a value of 1 creates a fully opaque color. Any decimal value 
in between 0 and 1 would create a semi-transparent color.

If we wanted our shade of orange to appear 50% opaque, we would use an RGBa color 
value of rgba(255, 102, 0, .5).

We can also change the opacity of our maroon and yellow background colors. The fol-
lowing code sets the maroon background color to 25% opaque and leaves the yellow 
background color 100% opaque.

1. .task {

2. background: rgba(128, 0, 0, .25);

3. }

4. .count {

5. background: rgba(255, 255, 0, 1);

6. }

RGB color values are becoming more popular, especially due to the ability to create semi-
transparent colors using RGBa.



Lesson 3 · Getting to Know CSS  49

HSL & HSLa Colors

HSL color values are stated using the hsl() function, which stands for hue, saturation, 
and lightness. Within the parentheses, the function accepts three comma-separated 
values, much like rgb().

The first value, the hue, is a unitless number from 0 to 360. The numbers 0 through 360 
represent the color wheel, and the value identifies the degree of a color on the color wheel.

The second and third values, the saturation and lightness, are percentage values from 0 
to 100%. The saturation value identifies how saturated with color the hue is, with 0 being 
grayscale and 100% being fully saturated. The lightness identifies how dark or light the 
hue value is, with 0 being completely black and 100% being completely white.

Returning to our shade of orange, as an HSL color value it would be written as  
hsl(24, 100%, 100%).

Our maroon and yellow background colors can also be stated as HSL color values,  
as shown here.

1. .task {

2. background: hsl(0, 100%, 50%);

3. }

4. .count {

5. background: hsl(60, 100%, 100%);

6. }

HSL color values, like RGBa, may also include an alpha, or transparency, channel with 
the use of the hsla() function. The behavior of the alpha channel is just like that of the 
rgba() function. A fourth value between 0 and 1, including decimals, must be added to 
the function to identify the degree of opacity.

Our shade of orange as an HSLa color set to 50% opaque would be represented as 
hsl(24, 100%, 100%, .5).

The same 25% opaque maroon background color and 100% opaque yellow background 
color from before would look like the following as HSLa color values.

1. .task {

2. background: hsla(0, 100%, 50%, .25);

3. }

4. .count {

5. background: hsla(60, 100%, 100%, 1);

6. }



50 Learn to Code HTML & CSS

The HSL color value is the newest color value available within CSS. Due to its age and 
support within browsers, though, it isn’t as widely used as the other values.

For the time being, hexadecimal color values remain the most popular as they are widely 
supported; though when an alpha channel for transparency is needed, RGBa color values 
are preferred. These preferences may change in the future, but for now we’ll use hexa-
decimal and RGBa color values.

Lengths
Length values within CSS are similar to colors in that there are a handful of different types 
of values for length, all of which serve distinct purposes. Length values come in two dif-
ferent forms, absolute and relative, each of which uses different units of measurement.

We’re going to stick to the more common—and more straightforward—values at the 
moment, as more complex values will provide much more power than we need for now.

Absolute Lengths

Absolute length values are the simplest length values, as they are fixed to a physical mea-
surement, such as inches, centimeters, or millimeters. The most popular absolute unit of 
measurement is known as the pixel and is represented by the px unit notation.

Pixels

The pixel is equal to 1/96th of an inch; thus there are 96 pixels in an inch. The exact mea-
surement of a pixel, however, may vary slightly between high-density and low-density 
viewing devices.

Pixels have been around for quite some time and are commonly used with a handful of 
different properties. The code here is using pixels to set the font size of all paragraphs to 
14 pixels.

1. p {

2. font-size: 14px;

3. }

With the changing landscape of viewing devices and their varying screen sizes, pixels 
have lost some of their popularity. As an absolute unit of measurement, they don’t 
provide too much flexibility. Pixels are, however, trustworthy and great for getting started. 
We’re going to lean on them quite a bit as we’re learning the ropes of HTML and CSS.



Lesson 3 · Getting to Know CSS  51

Relative Lengths

In addition to absolute length values, there are also relative length values. Relative length 
values are a little more complicated, as they are not fixed units of measurement; they rely 
on the length of another measurement.

Percentages

Percentages, represented by the % unit notation, are one of the most popular relative values.  
Percentage lengths are defined in relation to the length of another object. For example, to 
set the width of an element to 50%, we have to know the width of its parent element, the 
element it is nested within, and then identify 50% of the parent element’s width.

1. .col {

2. width: 50%;

3. }

Here we’ve set the width of the element with the class attribute value of col to 50%.  
That 50% will be calculated relative to the width of the element’s parent.

Percentages are extremely helpful for setting the height and width of elements and  
building out a web page’s layout. We’re going to rely on them often to help us out in 
these areas.

Em

The em unit is also a very popular relative value. The em unit is represented by the em  
unit notation, and its length is calculated based on an element’s font size.

A single em unit is equivalent to an element’s font size. So, for example, if an element  
has a font size of 14 pixels and a width set to 5em, the width would equal 70 pixels  
(14 pixels multiplied by 5).

1. .banner {

2. font-size: 14px;

3. width: 5em;

4. }

When a font size is not explicitly stated for an element, the em unit will be relative to  
the font size of the closest parent element with a stated font size.

The em unit is often used for styling text, including font sizes, as well as spacing around 
text, including margins and paddings. We’ll explore text a bit more in Lesson 6, “Working 
with Typography.”



There are a lot more absolute and relative units of measurement than those mentioned 
here. However, these three—pixels, percentages, and em units—are the most popular 
and the ones we’re going to primarily use.

Summary
Sadly our Styles Conference website lay dormant this lesson. We focused on the founda-
tions of CSS, covering exactly how it works and some common values we’re sure to use.

To briefly recap, within this lesson we’ve discussed the following:

• How style sheets cascade from the top to the bottom of a file

• What specificity is and how we can calculate it

• How to combine selectors to target specific elements or groups of elements

• How to use multiple classes on a single element to layer on different styles for more 
modular code

• The different color values available to use within CSS, including keyword, hexadecimal, 
RGB, and HSL values

• The different length values available to use within CSS, including pixels, percentages, 
and em units

We still have a lot to cover, but the fundamentals are starting to fall into place. Within  
the next few lessons we’ll continue to dive in to CSS, and our website will really begin to 
take shape.



Lesson 4

Opening the Box Model

We’ve familiarized ourselves with HTML and CSS; we know 

what they look like and how to accomplish some of the basics. 

Now we’re going to go a bit deeper and look at exactly how  

elements are displayed on a page and how they are sized.

In the process we’ll discuss what is known as the box model 

and how it works with HTML and CSS. We’re also going to look 

at a few new CSS properties and use some of the length values 

we covered in Lesson 3. Let’s begin.



54 Learn to Code HTML & CSS

How Are Elements Displayed?
Before jumping into the box model, it helps to understand how elements are displayed. 
In Lesson 2 we covered the difference between block-level and inline-level elements. To 
quickly recap, block-level elements occupy any available width, regardless of their content, 
and begin on a new line. Inline-level elements occupy only the width their content requires 
and line up on the same line, one after the other. Block-level elements are generally used 
for larger pieces of content, such as headings and structural elements. Inline-level elements 
are generally used for smaller pieces of content, such as a few words selected to be bold 
or italicized.

Display
Exactly how elements are displayed—as block-level elements, inline elements, or some-
thing else—is determined by the display property. Every element has a default display 
property value; however, as with all other property values, that value may be overwritten. 
There are quite a few values for the display property, but the most common are block, 
inline, inline-block, and none.

We can change an element’s display property value by selecting that element within 
CSS and declaring a new display property value. A value of block will make that ele-
ment a block-level element.

1. p {

2. display: block;

3. }

A value of inline will make that element an inline-level element.

1. p {

2. display: inline;

3. }



Lesson 4 · Opening the Box Model  55

Things get interesting with the inline-block value. Using this value will allow an element 
to behave as a block-level element, accepting all box model properties (which we’ll cover 
soon). However, the element will be displayed in line with other elements, and it will not 
begin on a new line by default.

1. p {

2. display: inline-block;

3. }

Figure 4.1 Three paragraphs displayed as inline-block elements, sitting one  
right next to the other in a horizontal line

The Space Between Inline-Block Elements

One important distinction with inline-block elements is that they are not always touching, 
or displayed directly against one another. Usually a small space will exist between two 
inline-block elements. This space, though perhaps annoying, is normal. We’ll discuss why 
this space exists and how to remove it in the next lesson.

Lastly, using a value of none will completely hide an element and render the page as if 
that element doesn’t exist. Any elements nested within this element will also be hidden.

1. div {

2. display: none;

3. }

Knowing how elements are displayed and how to change their display is fairly impor-
tant, as the display of an element has implications on how the box model is rendered. 
As we discuss the box model, we’ll be sure to look at these different implications and how 
they can affect the presentation of an element.



56 Learn to Code HTML & CSS

What Is the Box Model?
According to the box model concept, every element on a page is a rectangular box and 
may have width, height, padding, borders, and margins (see Figure 4.2).

That’s worth repeating: Every element on a page is a rectangular box.

Figure 4.2 When we look 
at each element individually, 
we can see how they are all 
rectangular, regardless of their 
presented shapes

Every element on every page conforms to the box model, so it’s incredibly important. Let’s 
take a look at it, along with a few new CSS properties, to better understand what we are 
working with.

Working with the Box Model
Every element is a rectangular box, and there are several properties that determine the 
size of that box. The core of the box is defined by the width and height of an element, 
which may be determined by the display property, by the contents of the element, or  
by specified width and height properties. padding and then border expand the dimen-
sions of the box outward from the element’s width and height. Lastly, any margin we 
have specified will follow the border.

Each part of the box model corresponds to a CSS property: width, height, padding, 
border, and margin.

Let’s look these properties inside some code:

1. div {

2. border: 6px solid #949599;

3. height: 100px;



Lesson 4 · Opening the Box Model  57

4. margin: 20px;

5. padding: 20px;

6. width: 400px;

7. }

According to the box model, the total width of an element can be calculated using the 
following formula:

margin-right + border-right + padding-right + width + padding-left + 

border-left + margin-left

In comparison, according to the box model, the total height of an element can be calcu-
lated using the following formula:

margin-top + border-top + padding-top + height + padding-bottom + 

border-bottom + margin-bottom

20  6  20 400 x 100

Margin

Border

Padding

20

6

20

20

6

20

20  6  20

Figure 4.3 The box model broken down, including a base height and width plus paddings, borders,  
and margins

Using the formulas with the box shown in Figure 4.3, we can find the total height and 
width of our example.

• Width: 492px = 20px + 6px + 20px + 400px + 20px + 6px + 20px

• Height: 192px = 20px + 6px + 20px + 100px + 20px + 6px + 20px



58 Learn to Code HTML & CSS

The box model is without question one of the more confusing parts of HTML and CSS. 
We set a width property value of 400 pixels, but the actual width of our element is 492 
pixels. By default the box model is additive; thus to determine the actual size of a box we 
need to take into account padding, borders, and margins for all four sides of the box. Our 
width not only includes the width property value, but also the size of the left and right 
padding, left and right borders, and left and right margins.

So far a lot of these properties might not make a whole lot of sense, and that’s all right. 
To clarify things, let’s take a close look at all of the properties—width, height, padding, 
border, and margin—that go into forming the box model.

Width & Height
Every element has default width and height. That width and height may be 0 pixels, but 
browsers, by default, will render every element with size. Depending on how an element 
is displayed, the default height and width may be adequate. If an element is key to the 
layout of a page, it may require specified width and height property values. In this case, 
the property values for non-inline elements may be specified.

Width
The default width of an element depends on its display value. Block-level elements have  
a default width of 100%, consuming the entire horizontal space available. Inline and  
inline-block elements expand and contract horizontally to accommodate their content. 
Inline-level elements cannot have a fixed size, thus the width and height properties are 
only relevant to non-inline elements. To set a specific width for a non-inline element, use 
the width property:

1. div {

2. width: 400px;

3. }



Lesson 4 · Opening the Box Model  59

Height
The default height of an element is determined by its content. An element will expand 
and contract vertically as necessary to accommodate its content. To set a specific height 
for a non-inline element, use the height property:

1. div {

2. height: 100px;

3. }

Sizing Inline-Level Elements

Please keep in mind that inline-level elements will not accept the width and height 
properties or any values tied to them. Block and inline-block elements will, however,  
accept the width and height properties and their corresponding values.

Margin & Padding
Depending on the element, browsers may apply default margins and padding to an element 
to help with legibility and clarity. We will generally see this with text-based elements. 
The default margins and padding for these elements may differ from browser to browser 
and element to element. In Lesson 1 we discussed using a CSS reset to tone all of these 
default values down to zero. Doing so allows us to work from the ground up and to 
specify our own values.

Margin

The margin property allows us to set the amount of space that surrounds an element. 
Margins for an element fall outside of any border and are completely transparent in color. 
Margins can be used to help position elements in a particular place on a page or to pro-
vide breathing room, keeping all other elements a safe distance away. Here’s the margin 
property in action:

1. div {

2. margin: 20px;

3. }



60 Learn to Code HTML & CSS

One oddity with the margin property is that vertical margins, top and bottom, are not 
accepted by inline-level elements. These vertical margins are, however, accepted by 
block-level and inline-block elements.

Padding

The padding property is very similar to the margin property; however, it falls inside of 
an element’s border, should an element have a border. The padding property is used to 
provide spacing directly within an element. Here’s the code:

1. div {

2. padding: 20px;

3. }

The padding property, unlike the margin property, works vertically on inline-level elements. 
This vertical padding may blend into the line above or below the given element, but it will 
be displayed.

Margin & Padding on Inline-Level Elements

Inline-level elements are affected a bit differently than block and inline-block elements 
when it comes to margins and padding. Margins only work horizontally—left and 
right—on inline-level elements. Padding works on all four sides of inline-level elements; 
however, the vertical padding—the top and bottom—may bleed into the lines above 
and below an element.

Margins and padding work like normal for block and inline-block elements.

Margin & Padding Declarations

In CSS, there is more than one way to declare values for certain properties. We can use 
longhand, listing multiple properties and values one after the other, in which each value 
has its own property. Or we can use shorthand, listing multiple values with one property. 
Not all properties have a shorthand alternative, so we must make sure we are using the 
correct property and value structure.



Lesson 4 · Opening the Box Model  61

The margin and padding properties come in both longhand and shorthand form. When 
using the shorthand margin property to set the same value for all four sides of an element, 
we specify one value:

1. div {

2. margin: 20px;

3. }

To set one value for the top and bottom and another value for the left and right sides of 
an element, specify two values: top and bottom first, then left and right. Here we are 
placing margins of 10 pixels on the top and bottom of a <div> and margins of 20 pixels 
on the left and right:

1. div {

2. margin: 10px 20px;

3. }

To set unique values for all four sides of an element, specify those values in the order 
of top, right, bottom, and left, moving clockwise. Here we are placing margins of 10 
pixels on the top of a <div>, 20 pixels on the right, 0 pixels on the bottom, and 15 pixels 
on the left.

1. div {

2. margin: 10px 20px 0 15px;

3. }

Using the margin or padding property alone, with any number of values, is considered 
shorthand. With longhand, we can set the value for one side at a time using unique 
properties. Each property name (in this case margin or padding) is followed by a dash 
and the side of the box to which the value is to be applied: top, right, bottom, or left. 
For example, the padding-left property accepts only one value and will set the left 
padding for that element; the margin-top property accepts only one value and will set 
the top margin for that element.

1. div {

2. margin-top: 10px;

3. padding-left: 6px;

4. }



62 Learn to Code HTML & CSS

When we wish to identify only one margin or padding value, it is best to use the long-
hand properties. Doing so keeps our code explicit and helps us to avoid any confusion 
down the road. For example, did we really want to set the top, right, and left sides of 
the element to have margins of 0 pixels, or did we really only want to set the bottom mar-
gin to 10 pixels? Using longhand properties and values here helps to make our intentions 
clear. When dealing with three or more values, though, shorthand is incredibly helpful.

Margin & Padding Colors

The margin and padding properties are completely transparent and do not accept any 
color values. Being transparent, though, they show the background colors of relative ele-
ments. For margins, we see the background color of the parent element, and for padding, 
we see the background color of the element the padding is applied to.

Borders
Borders fall between the padding and margin, providing an outline around an element. 
The border property requires three values: width, style, and color. Shorthand values 
for the border property are stated in that order—width, style, color. In longhand, these 
three values can be broken up into the border-width, border-style, and border-color 
properties. These longhand properties are useful for changing, or overwriting, a single 
border value.

The width and color of borders can be defined using common CSS units of length and 
color, as discussed in Lesson 3.

Borders can have different appearances. The most common style values are solid, 
double, dashed, dotted, and none, but there are several others to choose from.

Here is the code for a 6-pixel-wide, solid, gray border that wraps around all four sides of 
a <div>:

1. div {

2. border: 6px solid #949599;

3. }



Lesson 4 · Opening the Box Model  63

Figure 4.4 Different border sizes and styles

Individual Border Sides

As with the margin and padding properties, borders can be placed on one side of an ele-
ment at a time if we’d like. Doing so requires new properties: border-top, border-right, 
border-bottom, and border-left. The values for these properties are the same as 
those of the border property alone: width, style, and color. If we want, we can make a 
border appear only on the bottom of an element:

1. div {

2. border-bottom: 6px solid #949599;

3. }

Additionally, styles for individual border sides may be controlled at an even finer level. 
For example, if we wish to change only the width of the bottom border we can use the 
following code:

1. div {

2. border-bottom-width: 12px;

3. }

These highly specific longhand border properties include a series of hyphen-separated 
words starting with the border base, followed by the selected side—top, right, bottom, 
or left—and then width, style, or color, depending on the desired property.

Border Radius

While we’re looking at borders and their different properties, we need to examine the 
border-radius property, which enables us to round the corners of an element.

The border-radius property accepts length units, including percentages and pixels, that 
identify the radius by which the corners of an element are to be rounded. A single value 
will round all four corners of an element equally; two values will round the top-left/
bottom-right and top-right/bottom-left corners in that order; four values will round 
the top-left, top-right, bottom-right, and bottom-left corners in that order.

2px
solid

6px
double

8px
dashed

4px
dotted



64 Learn to Code HTML & CSS

When considering the order in which multiple values are applied to the border-radius

property (as well as the margin and padding properties), remember that they move in a
clockwise fashion starting at the top left of an element.

1. div {

2. border-radius: 5px;

3. }

Figure 4.5  
Different border-radius sizes

The border-radius property may also be broken out into longhand properties that allow
us to change the radii of individual corners of an element. These longhand properties
begin with border, continue with the corner’s vertical location (top or bottom) and the
corner’s horizontal location (left or right), and then end with radius. For example, to
change the top-right corner radius of a <div>, the border-top-right-radius property
can be used.

1. div {

2. border-top-right—radius: 5px;

3. }

Box Sizing
Until now the box model has been an additive design. If you set the width of an element
to 400 pixels and then add 20 pixels of padding and a border of 10 pixels on every side,
the actual full width of the element becomes 460 pixels. Remember, we need to add the
width, padding, and border property values together to get the actual, full width of an
element.

The box model may, however, be changed to support different calculations. CSS3 intro-
duced the box-sizing property, which allows us to change exactly how the box model
works and how an element’s size is calculated. The property accepts three primary values—
content-box, padding-box, and border-box—each of which has a slightly different
impact on how the box size is calculated.

5px 50% 15px 75px



Lesson 4 · Opening the Box Model  65

Content Box

The content-box value is the default value, leaving the box model as an additive design. 
If we don’t use the box-sizing property, this will be the default value for all elements. 
The size of an element begins with the width and height properties, and then any padding, 
border, or margin property values are added on from there.

1. div {

2. -webkit-box-sizing: content-box;

3. -moz-box-sizing: content-box;

4. -moz-box-sizing: content-box;

5. }

Browser-Specific Properties & Values

What are all those hyphens and letters on the box-sizing property?

As CSS3 was introduced, browsers gradually began to support different properties and 
values, including the box-sizing property, by way of vendor prefixes. As parts of the 
CSS3 specification are finalized and new browser versions are released, these vendor 
prefixes become less and less relevant. As time goes on, vendor prefixes are unlikely  
to be a problem; however, they still provide support for some of the older browsers that 
leveraged them. We may run across them from time to time, and we may even want to 
use them should we wish to support older browsers.

Vendor prefixes may be seen on both properties and values, all depending on the CSS 
specification. Here they are shown on the box-sizing property. Browser vendors were 
free to chose when to use a prefix and when not to. Thus, some properties and values 
require vendor prefixes for certain browser vendors but not for others.

Moving forward, when a property or value needs a vendor prefix, the prefix will only be 
used in the introduction of that property or value (in the interest of keeping our code 
digestible and concise). Do not forget to add the necessary vendor prefixes when you’re 
actually writing the code.

For reference, the most common vendor prefixes are outlined here: 

• Mozilla Firefox: -moz-

• Microsoft Internet Explorer: -ms-

• Webkit (Google Chrome and Apple Safari): -webkit-



66 Learn to Code HTML & CSS

Padding Box

The padding-box value alters the box model by including any padding property values 
within the width and height of an element. When using the padding-box value, if an 
element has a width of 400 pixels and a padding of 20 pixels around every side, the actual 
width will remain 400 pixels. As any padding values increase, the content size within an 
element shrinks proportionately.

If we add a border or margin, those values will be added to the width or height properties 
to calculate the full box size. For example, if we add a border of 10 pixels and a padding 
of 20 pixels around every side of the element with a width of 400 pixels, the actual full 
width will become 420 pixels.

1. div {

2. box-sizing: padding-box;

3. }

Border Box

Lastly, the border-box value alters the box model so that any border or padding property 
values are included within the width and height of an element. When using the border-box 
value, if an element has a width of 400 pixels, a padding of 20 pixels around every side, 
and a border of 10 pixels around every side, the actual width will remain 400 pixels.

If we add a margin, those values will need to be added to calculate the full box size. No 
matter which box-sizing property value is used, any margin values will need to be 
added to calculate the full size of the element.

1. div {

2. box-sizing: border-box;

3. }

border-box

padding-box

content-box Figure 4.6  
Different box-
sizing values  
allow the width of 
an element—and  
its box—to be  
calculated from  
different areas



Lesson 4 · Opening the Box Model  67

Picking a Box Size

Generally speaking, the best box-sizing value to use is border-box. The border-box 
value makes our math much, much easier. If we want an element to be 400 pixels wide, it 
is, and it will remain 400 pixels wide no matter what padding or border values we add to it.

Additionally, we can easily mix length values. Say we want our box to be 40% wide. Add-
ing a padding of 20 pixels and a border of 10 pixels around every side of an element 
isn’t difficult, and we can still guarantee that the actual width of our box will remain 40% 
despite using pixel values elsewhere.

The only drawback to using the box-sizing property is that as part of the CSS3 specifi-
cation, it isn’t supported in every browser; it especially lacks support in older browsers.  
Fortunately this is becoming less and less relevant as new browsers are released. Chances 
are we’re safe to use the box-sizing property, but should we notice any issues, it’s worth 
looking into which browser those issues are occurring with.

Developer Tools
Most browsers have what are known as Developer Tools. These tools allow us to inspect 
an element on a page, see where that element lives within the HTML document, and see 
what CSS properties and values are being applied to it. Most of these tools also include a 
box model diagram to show the computed size of an element.

To see the Developer Tools in Google Chrome, click “View” within the menu bar and navi-
gate to “Developer” and then “Developer Tools.” This loads a drawer at the bottom of the 
browser window that provides a handful of tools for inspecting our code.

Clicking the magnifying glass at the bottom of this drawer enables us to hover over and 
then click on different elements on the page to review more information about them. 
After selecting an element, we’ll see a handful of tabs on the right-hand side of the Ele-
ments panel within our Developer Tools. Selecting the “Computed” tab will show us a 
breakdown of the box model for our selected element.

Play around with the Developer Tools, be it in Google Chrome, Mozilla Firefox, Apple 
Safari, or other browsers; there is much to learn from looking at our code. I generally leave 
the Developer Tools open at all times when writing HTML and CSS. And I frequently 
inspect the code of other websites to see how they are built, too.



68 Learn to Code HTML & CSS

Figure 4.7 The Google Chrome Developer Tools, which help us to inspect the HTML and CSS on any page

The box model is one of the most confusing parts of learning how to write HTML and CSS. 
It is also one of the most powerful parts of HTML and CSS, and once we have it mastered, 
most everything else—like positioning content—will come to us fairly easily.

In Practice
Let’s jump back into our Styles Conference website to center it on the page and add some 
more content.

1. Let’s start by adjusting our box size to use the border-box version of the box model, 
which will make sizing all of our elements much easier. Within our main.css file, just 
below our reset, let’s add a comment to identify the code for what will become our 
grid and help determine the layout of our website. We’re putting this below our reset 
so that it falls in the proper position within the cascade.

From there, we can use the universal selector, *, along with universal pseudo-elements, 
*:before and *:after, to select every imaginable element and change the box-sizing 
to border-box. Remember, we’re going to want to include the necessary vendor 
prefixes for the box-sizing property, as it is a relatively new property.

1. /*

2. ========================================

3. Grid

4. ========================================

5. */

6.

7. *,

8. *:before,



Lesson 4 · Opening the Box Model  69

9. *:after {

10. -webkit-box-sizing: border-box;

11. -moz-box-sizing: border-box;

12. -moz-box-sizing: border-box;

13. }

2. Next we’ll want to create a class that will serve as a container for our elements. We 
can use this container class on different elements to set a common width, center  
the elements on the page, and apply some common horizontal padding.

Just below our universal selector rule set, let’s create a selector with a class of  
container. Within this selector let’s set our width to 960 pixels, our left and  
right padding to 30 pixels, our top and bottom margins to 0, and our left and 
right margins to auto.

Setting a width tells the browser definitively how wide any element with the class of 
container should be. Using a left and right margin of auto in conjunction with 
this width lets the browser automatically figure out equal left and right margins 
for the element, thus centering it on the page. Lastly, the left and right padding 
ensures that our content isn’t sitting directly on the edge of the element and provides 
a little breathing room for the content.

1. .container {

2. margin: 0 auto;

3. padding-left: 30px;

4. padding-right: 30px;

5. width: 960px;

6. }

3. Now that we have a container class available to use, let’s go ahead and apply the 
class of container throughout our HTML to the <header> and <footer> elements 
on each page, including the index.html, speakers.html, schedule.html, venue.
html, and register.html files.

1. <header class="container">...</header>

2.

3. <footer class="container">...</footer>

4. While we’re at it, let’s go ahead and center the rest of the content on our pages.  
On the home page, our index.html file, let’s add the class of container to each 
<section> element on the page, one for our hero section (the section that introduces 
our conference) and one for our teasers section.

1. <section class="container">...</section>



70 Learn to Code HTML & CSS

Additionally, let’s wrap all of the <h1> elements on each page with a <section>  
element with the class of container.

1. <section class="container">

2.

3. <h1>...</h1>

4.

5. </section>

We’ll come back and adjust these elements and classes later, but for now we’re 
headed in the right direction.

5. Now that all of our content is centered, let’s create some vertical spacing between 
elements. For starters let’s place a 22-pixel bottom margin on a few of our heading 
and paragraph elements. We’ll place and comment on these typography styles below 
our grid styles.

1. /*

2. ========================================

3. Typography

4. ========================================

5. */

6.

7. h1, h3, h4, h5, p {

8. margin-bottom: 22px;

9. }

We intentionally skipped <h2> and <h6> elements, as the design does not call for 
margins on <h2> elements and as we won’t be using any <h6> elements at this time.

6. Let’s also try our hand at creating a border and some rounded corners. We’ll start by 
placing a button within the top <section> element on our home page, just below 
the header.

Previously we added an <a> element within this <section> element. Let’s add the 
classes of btn and btn-alt to this anchor.

1. <a class="btn btn-alt">...</a>

Now let’s create some styles for those classes within our CSS. Below our typography 
rule set, let’s create a new section of the CSS file for buttons.



Lesson 4 · Opening the Box Model  71

To begin let’s add the btn class and apply some common styles that can be shared 
across all buttons. We’ll want all of our buttons to have a 5-pixel border-radius. 
They should be displayed as inline-block elements so we can add padding around 
all four sides without issue; we’ll remove any margin.

1. /*

2. ========================================

3. Buttons

4. ========================================

5. */

6.

7. .btn {

8. border-radius: 5px;

9. display: inline-block;

10. margin: 0;

11. }

We’ll also want to include styles specific to this button, which we’ll do by using the 
btn-alt class. Here we’ll add a 1-pixel, solid, gray border with 10 pixels of padding on 
the top and bottom of the button and 30 pixels of padding on the left and right  
of the button.

1. .btn-alt {

2. border: 1px solid #dfe2e5;

3. padding: 10px 30px;

4. }

Using both the btn and btn-alt classes on the same <a> element allows these 
styles to be layered on, rendering all of the styles on a single element.

7. Because we’re working on the home page, let’s also add a bit of padding to the 
<section> element that contains our <a> element with the classes of btn and  
btn-alt. We’ll do so by adding a class attribute value of hero to the <section> 
element, alongside the container class attribute value, as this will be the leading 
section of our website.

1. <section class="hero container">

2. ...

3. </section>



72 Learn to Code HTML & CSS

Next we’ll want to create a new section within our CSS file for home page styles,  
and, once we’re ready, we’ll use the class of hero to apply padding around all four 
sides of the <section> element.

1. /*

2. ========================================

3. Home

4. ========================================

5. */

6.

7. .hero {

8. padding: 22px 80px 66px 80px;

9. }

Our website is starting to come together, especially the home page, as shown in Figure 4.8.

Figure 4.8 Our Styles Conference home page, taking shape after a few updates

The source code for the exercises within this lesson can be found at  
http://learn.shayhowe.com/html-css/opening-the-box-model/.

http://learn.shayhowe.com/html-css/opening-the-box-model/


Lesson 4 · Opening the Box Model  73

The Universal Selector

In the first step of this exercise we were introduced to the universal selector. In CSS the 
asterisk, *, is the universal selector, which selects every element. Rather than listing every 
single element imaginable, we can use the asterisk as a catch-all to select all elements 
for us.

The :before and :after pseudo-elements also mentioned in this step are elements 
that can be dynamically generated with CSS. We’re not going to be using these elements 
within our project; however, when using the universal selector it’s a good practice to also 
include these pseudo-elements in case they should ever appear.

Summary
Take a second and pat yourself on the back. I’ll wait.

Learning all the different parts of the box model is no small feat. These concepts, although 
briefly introduced, take quite a bit of time to fully master, and we’re on the right path 
toward doing so.

In brief, within this lesson we talked about the following:

• How different elements are displayed

• What the box model is and why it’s important

• How to change the size, including the height and width, of elements

• How to add margin, padding, and borders to elements

• How to change the box sizing of elements and the effects this has on the box model

Now that we have a better understanding of how elements are displayed and sized, it’s 
time to move into positioning these elements.



Lesson 5

Positioning Content

One of the best things about CSS is that it gives us the ability to 

position content and elements on a page in nearly any imaginable 

way, bringing structure to our designs and helping make content 

more digestible.

There are a few different types of positioning within CSS, and 

each has its own application. In this chapter we’re going to take 

a look at a few different use cases—creating reusable layouts 

and uniquely positioning one-off elements—and describe a few 

ways to go about each.



Lesson 5 · Positioning Content  75

Positioning with Floats
One way to position elements on a page is with the float property. The float property 
is pretty versatile and can be used in a number of different ways.

Essentially, the float property allows us to take an element, remove it from the normal 
flow of a page, and position it to the left or right of its parent element. All other elements 
on the page will then flow around the floated element. An <img> element floated to the 
side of a few paragraphs of text, for example, will allow the paragraphs to wrap around 
the image as necessary.

When the float property is used on multiple elements at the same time, it provides the 
ability to create a layout by floating elements directly next to or opposite each other, as 
seen in multiple-column layouts.

The float property accepts a few values; the two most popular values are left and 
right, which allow elements to be floated to the left or right of their parent element.

1. img {

2. float: left;

3. }

Floats in Practice
Let’s create a common page layout with a header at the top, two columns in the center, 
and a footer at the bottom (see Figure 5.1). Ideally this page would be marked up using 
the <header>, <section>, <aside>, and <footer> elements as discussed in Lesson 2, 

“Getting to Know HTML.” Inside the <body> element, the HTML may look like this:

1. <header>...</header>

2. <section>...</section>

3. <aside>...</aside>

4. <footer>...</footer>



76 Learn to Code HTML & CSS

<header>

<section>

<footer><aside>

<footer>

Figure 5.1 A common page layout without any floats

Here the <section> and <aside> elements, as block-level elements, will be stacked on 
top of one another by default. However, we want these elements to sit side by side. By 
floating the <section> to the left and the <aside> to the right, we can position them 
as two columns sitting opposite one another. Our CSS should look like this:

1. section {

2. float: left;

3. }

4.

5. aside {

6. float: right;

7. }

For reference, when an element is floated, it will float all the way to the edge of its parent 
element. If there isn’t a parent element, the floated element will then float all the way to 
the edge of the page.

When we float an element, we take it out of the normal flow of the HTML document. 
This causes the width of that element to default to the width of the content within it. 
Sometimes, such as when we’re creating columns for a reusable layout, this behavior is 
not desired. It can be corrected by adding a fixed width property value to each column. 
Additionally, to prevent floated elements from touching one another, causing the content 
of one to sit directly next to the content of the other, we can use the margin property to 
create space between elements.



Lesson 5 · Positioning Content  77

Here, we are extending the previous code block, adding a margin and width to each 
column to better shape our desired outcome (Figure 5.2).

1. section {

2. float: left;

3. margin: 0 1.5%;

4. width: 63%;

5. }

6. aside {

7. float: right;

8. margin: 0 1.5%;

9. width: 30%;

10. }

<header>

<footer>

<section>
float: right;

<section>
float: left;

Figure 5.2 A two-column page layout using floats

Floats May Change an Element’s Display Value

When floating an element, it is also important to recognize that an element is removed 
from the normal flow of a page, and that may change an element’s default display 
value. The float property relies on an element having a display value of block, and 
may alter an element’s default display value if it is not already displayed as a block-
level element.

For example, an element with a display value of inline, such as the <span> inline-level 
element, ignores any height or width property values. However, should that inline-level 
element be floated, its display value will be changed to block, and it may then accept 
height or width property values.

As we float elements we must keep an eye on how their display property values  
are affected.



78 Learn to Code HTML & CSS

With two columns we can float one column to the left and another to the right, but with 
more columns we must change our approach. Say, for example, we’d like to have a row of 
three columns between our <header> and <footer> elements. If we drop our <aside> 
element and use three <section> elements, our HTML might look like this:

1. <header>...</header>

2. <section>...</section>

3. <section>...</section>

4. <section>...</section>

5. <footer>...</footer>

To position these three <section> elements in a three-column row, instead of floating  
one column to the left and one column to the right, we’ll float all three <section> ele-
ments to the left. We’ll also need to adjust the width of the <section> elements to 
account for the additional columns and to get them to sit one next to the other (see 
Figure 5.3).

1. section {

2. float: left;

3. margin: 0 1.5%;

4. width: 30%;

5. }

Here we have three columns, all with equal width and margin values and all floated to 
the left.

<header>

<footer>

<section>
float: left;

<section>
float: left;

<section>
float: left;

Figure 5.3 A three-column page layout using floats



Lesson 5 · Positioning Content  79

Clearing & Containing Floats
The float property was originally designed to allow content to wrap around images.  
An image could be floated, and all of the content surrounding that image could then natu-
rally flow around it. Although this works great for images, the float property was never 
actually intended to be used for layout and positioning purposes, and thus it comes with 
a few pitfalls.

One of those pitfalls is that occasionally the proper styles will not render on an element 
that it is sitting next to or is a parent element of a floated element. When an element is 
floated, it is taken out of the normal flow of the page, and, as a result, the styles of ele-
ments around that floated element can be negatively impacted.

Often margin and padding property values aren’t interpreted correctly, causing them to 
blend into the floated element; other properties can be affected, too.

Another pitfall is that sometimes unwanted content begins to wrap around a floated 
element. Removing an element from the flow of the document allows all the elements 
around the floated element to wrap and consume any available space around the floated 
element, which is often undesired.

With our previous two-column example, after we floated the <section> and <aside> 
elements, and before we set a width property value on either of them, the content within 
the <footer> element would have wrapped in between the two floated elements above 
it, filling in any available space. Consequently, the <footer> element would have sat 
in the gutter between the <section> and <aside> elements, consuming the available 
space (see Figure 5.4).

<header>

<section>
float: left;

<footer>
<section>

float: right;

Figure 5.4 A two-column page layout without any identified column widths or cleared floats

To prevent content from wrapping around floated elements, we need to clear, or contain, 
those floats and return the page to its normal flow. We’ll proceed by looking at how to 
clear floats, and then we’ll take a look at how to contain floats.



80 Learn to Code HTML & CSS

Clearing Floats

Clearing floats is accomplished using the clear property, which accepts a few different 
values: the most commonly used values being left, right, and both.

1. div {

2. clear: left;

3. }

The left value will clear left floats, while the right value will clear right floats. The both 
value, however, will clear both left and right floats and is often the most ideal value.

Going back to our previous example, if we use the clear property with the value of both 
on the <footer> element, we are able to clear the floats (see Figure 5.5). It is important 
that this clear be applied to an element appearing after the floated elements, not before, 
to return the page to its normal flow.

1. footer {

2. clear: both;

3. }

<header>

<footer>
clear: both:

<section>
float: right;

<section>
float: left;

Figure 5.5 A two-column page layout with properly cleared floats

Containing Floats

Rather than clearing floats, another option is to contain the floats. The outcomes of 
containing floats versus those of clearing them are nearly the same; however, containing 
floats does help to ensure that all of our styles will be rendered properly.

To contain floats, the floated elements must reside within a parent element. The parent  
element will act as a container, leaving the flow of the document completely normal 
outside of it. The CSS for that parent element, represented by the group class below, is 
shown here:



Lesson 5 · Positioning Content  81

1. .group:before,

2. .group:after {

3. content: "";

4. display: table;

5. }

6. .group:after {

7. clear: both;

8. }

9. .group {

10. clear: both;

11. *zoom: 1;

12. }

There’s quite a bit going on here, but essentially what the CSS is doing is clearing any 
floated elements within the element with the class of group and returning the flow of the 
document back to normal.

More specifically, the :before and :after pseudo-elements, as mentioned in the Lesson 4  
exercise, are dynamically generated elements above and below the element with the class 
of group. Those elements do not include any content and are displayed as table-level 
elements, much like block-level elements. The dynamically generated element after the 
element with the class of group is clearing the floats within the element with the class of 
group, much like the clear from before. And lastly, the element with the class of group 
itself also clears any floats that may appear above it, in case a left or right float may exist.  
It also includes a little trickery to get older browsers to play nicely.

It is more code than the clear: both; declaration alone, but it can prove to be  
quite useful.

Looking at our two-column page layout from before, we could wrap the <section> and 
<aside> elements with a parent element (see Figure 5.6). That parent element then 
needs to contain the floats within itself. The code would look like this:

HTML

1. <header>...</header>

2. <div class="group">

3. <section>...</section>

4. <aside>...</aside>

5. </div>

6. <footer>...</footer>



82 Learn to Code HTML & CSS

CSS

1. .group:before,

2. .group:after {

3. content: "";

4. display: table;

5. }

6. .group:after {

7. clear: both;

8. }

9. .group {

10. clear: both;

11. *zoom: 1;

12. }

13. section {

14. float: left;

15. margin: 0 1.5%;

16. width: 63%;

17. }

18. aside {

19. float: right;

20. margin: 0 21.5%;

21. width: 30%;

22. }

<header>

<div class="group">

<footer>

<section>
float: right;

<section>
float: left;

Figure 5.6 A two-column page layout with contained floats



Lesson 5 · Positioning Content  83

The technique shown here for containing elements is know as a “clearfix” and can often 
be found in other websites with the class name of clearfix or cf. We’ve chosen to use 
the class name of group, though, as it is representing a group of elements, and better 
expresses the content.

As elements are floated, it is important to keep note of how they affect the flow of a page 
and to make sure the flow of a page is reset by either clearing or containing the floats as 
necessary. Failing to keep track of floats can cause quite a few headaches, especially as 
pages begin to have multiple rows of multiple columns.

In Practice
Let’s return to the Styles Conference website to try floating some content.

1. First things first, before we begin floating any elements, let’s provide a way to contain 
those floats by adding the clearfix to our CSS. Within the main.css file, just below 
our grid styles, let’s add the clearfix under the class name group, just like before.

1. /*

2. ========================================

3. Clearfix

4. ========================================

5. */

6.

7. .group:before,

8. .group:after {

9. content: "";

10. display: table;

11. }

12. .group:after {

13. clear: both;

14. }

15. .group {

16. clear: both;

17. *zoom: 1;

18. }

2. Now that we can contain floats, let’s float the primary <h1> within the <header>  
element to the left and allow all of the other content in the header to wrap to the  
right of it.



84 Learn to Code HTML & CSS

To do this, let’s add a class of logo to the <h1> element. Then within our CSS, let’s 
add a new section of styles for the primary header. In this section we’ll select the 
<h1> element with the logo class and then float it to the left.

HTML

1. <h1 class="logo">

2. <a href="index.html">Styles Conference</a>

3. </h1>

CSS

1. /*

2. ========================================

3. Primary header

4. ========================================

5. */

6.

7. .logo {

8. float: left;

9. }

3. While we’re at it, let’s add a little more detail to our logo. We’ll begin by placing a 
<br> element, or line break, between the word “Styles” and the word “Conference” to 
force the text of our logo to sit on two lines.

Within the CSS, let’s add a border to the top of our logo and some vertical padding 
to give the logo breathing room.

HTML

1. <h1 class="logo">

2. <a href="index.html">Styles <br> Conference</a>

3. </h1>

CSS

1. .logo {

2. border-top: 4px solid #648880;

3. padding: 40px 0 22px 0;

4. float: left;

5. }



Lesson 5 · Positioning Content  85

4. Because we floated the <h1> element, we’ll want to contain that float. The closest 
parent element of the <h1> element is the <header> element, so we’ll want to add 
the class of group to the <header> element. Doing this applies the clearfix styles we 
set up earlier to the <header> element.

1. <header class="container group">

2. ...

3. </header>

5. The <header> element is taking shape, so let’s take a look at the <footer> element. 
Much like we did with the <header> element, we’ll float our copyright to the left 
within the <small> element and let all other elements wrap around it to the right.

Unlike the <header> element, though, we’re not going to use a class directly on the 
floated element. This time we’re going to apply a class to the parent of the floated 
element and use a unique CSS selector to select the element and then float it.

Let’s start by adding the class of primary-footer to the <footer> element. Because 
we know we’ll be floating an element within the <footer> element, we should also 
add the class of group while we’re at it.

1. <footer class="primary-footer container group">

2. ...

3. </footer>

6. Now that the class of primary-footer is on the <footer> element, we can use that 
class to prequalify the <small> element with CSS. We’ll want to select and float 
the <small> element to the left. Let’s not forget to create a new section within our 
main.css file for these primary footer styles.

1. /*

2. ========================================

3. Primary footer

4. ========================================

5. */

6.

7. .primary-footer small {

8. float: left;

9. }

To review, here we are selecting the <small> element, which must reside within an 
element with the class attribute value of primary-footer, such as our <footer> 
element, for example.



86 Learn to Code HTML & CSS

7. Lastly, let’s put some padding on the top and bottom of the <footer> element to 
help separate it a little more from the rest of the page. We can do this directly by 
using the primary-footer class with a class selector.

1. .primary-footer {

2. padding-bottom: 44px;

3. padding-top: 44px;

4. }

With all of these changes to the <header> and <footer> elements, we have to be sure 
to make them on every page, not just the index.html page. Our current home page is 
shown in Figure 5.7.

Figure 5.7 With a few floats, the <header> and <footer> elements on our Styles Conference home 
page are coming together



Lesson 5 · Positioning Content  87

Positioning with Inline-Block
In addition to using floats, another way we can position content is by using the display 
property in conjunction with the inline-block value. The inline-block method, as we’ll 
discuss, is primarily helpful for laying out pages or for placing elements next to one 
another within a line.

Recall that the inline-block value for the display property will display elements within 
a line while allowing them to accept all box model properties, including height, width, 
padding, border, and margin. Using inline-block elements allows us to take full advan-
tage of the box model without having to worry about clearing any floats.

Inline-Block in Practice
Let’s take a look at our three-column example from before. We’ll start by keeping our 
HTML just as it is:

1. <header>...</header>

2. <section>...</section>

3. <section>...</section>

4. <section>...</section>

5. <footer>...</footer>

Now instead of floating our three <section> elements, we’ll change their display values 
to inline-block, leaving the margin and width properties from before alone. Our 
resulting CSS will look like this:

1. section {

2. display: inline-block;

3. margin: 0 1.5%;

4. width: 30%;

5. }

Unfortunately, this code alone doesn’t quite do the trick, and the last <section> element 
is pushed to a new row. Remember, because inline-block elements are displayed on the 
same line as one another, they include a single space between them. When the size of 
each single space is added to the width and horizontal margin values of all the elements 
in the row, the total width becomes too great, pushing the last <section> element to a 
new row. In order to display all of the <section> elements on the same row, the white 
space between each <section> element must be removed.



88 Learn to Code HTML & CSS

<header>

<section>
display:

inline-block;

<section>
display:

inline-block;

<section>
display:

inline-block;

<footer>

Figure 5.8 A three-column page layout using inline-block elements without removing any  
unnecessary white space

Removing Spaces Between 
Inline-Block Elements
There are a number of ways to remove the space between inline-block elements, and 
some are more complex than others. We are going to focus on two of the easiest ways, 
both of which happen inside HTML.

The first solution is to put each new <section> element’s opening tag on the same line 
as the previous <section> element’s closing tag. Rather than using a new line for each 
element, we’ll end and begin elements on the same line. Our HTML could look like this:

1. <header>...</header>

2. <section>

3. ...

4. </section><section>

5. ...

6. </section><section>

7. ...

8. </section>

9. <footer>...</footer>



Lesson 5 · Positioning Content  89

Writing inline-block elements this way ensures that the space between inline-block ele-
ments within HTML doesn’t exist; consequently, the space will not appear when the page 
is rendered (see Figure 5.9).

<header>

<section>
display:

inline-block;

<section>
display:

inline-block;

<section>
display:

inline-block;

<footer>

Figure 5.9 A three-column page layout using inline-block elements with properly removed  
white space

Another way to remove the white space between inline-block elements is to open an HTML 
comment directly after an inline-block element’s closing tag. Then, close the HTML com-
ment immediately before the next inline-block element’s opening tag. Doing this allows 
inline-block elements to begin and end on separate lines of HTML and “comments out” 
any potential spaces between the elements. The resulting code would look like this:

1. <header>...</header>

2. <section>

3. ...

4. </section><!--

5. --><section>

6. ...

7. </section><!--

8. --><section>

9. ...

10. </section>

11. <footer>...</footer>

Neither of these options is perfect, but they are helpful. I tend to favor using comments 
for better organization, but which option you choose is entirely up to you.



90 Learn to Code HTML & CSS

Creating Reusable Layouts
When building a website, it is always best to write modular styles that may be reused 
elsewhere, and reusable layouts are high on the list of reusable code. Layouts can be  
created using either floats or inline-block elements, but which works best and why?

Whether it’s better to use floats or inline-block elements to lay out the structure of a 
page is open to debate. My approach is to use inline-block elements to create the grid—
or layout—of a page and to then use floats when I want content to wrap around a given 
element (as floats were intended to do with images). Generally, I also find inline-block 
elements easier to work with.

That said, use whatever works best for you. If you are comfortable with one approach 
over the other, then go for it.

Currently there are new CSS specifications in the works—specifically flex- and grid-
based properties—that will help address how to best lay out pages. Keep an eye out for 
these methods as they begin to surface.

In Practice
With a solid understanding of reusable layouts, the time has come to implement one in 
our Styles Conference website.

1. For the Styles Conference website, we’ll create a three-column reusable layout using 
inline-block elements. We’ll do so in a way that allows us to have three columns of 
equal width or two columns with the total width split between them, two-thirds in 
one and one-third in the other.

To begin, we’ll create classes that define the width of these columns. The two 
classes we’ll create are col-1-3, for one-third, and col-2-3, for two-thirds. Within 
the grid section of our main.css file, let’s go ahead and define these classes and 
their corresponding widths.

1. .col-1-3 {

2. width: 33.33%;

3. }

4. .col-2-3 {

5. width: 66.66%;

6. }



Lesson 5 · Positioning Content  91

2. We’ll want both of the columns to be displayed as inline-block elements. We’ll need 
to make sure that their vertical alignment is set to the top of each column, too.

Let’s create two new selectors that will share the display and vertical-alignment 
property styles.

1. .col-1-3,

2. .col-2-3 {

3. display: inline-block;

4. vertical-align: top;

5. }

Looking at the CSS again, we’ve created two class selectors, col-1-3 and col-2-3, 
that are separated with a comma. The comma at the end of the first selector signifies 
that another selector is to follow. The second selector is followed by the opening curly 
bracket, {, which signifies that style declarations are to follow. By comma-separating 
the selectors, we can bind the same styles to multiple selectors at one time.

3. We’ll want to put some space in between each of the columns to help break up 
the content. We can accomplish this by putting horizontal padding on each of the 
columns.

This works well; however, when two columns are sitting next to one another, the 
width of the space between them will be double that of the space from the outside 
columns to the edge of the row. To balance this we’ll place all of our columns within  
a grid and add the same padding from our columns to that grid.

Let’s use a class name of grid to identify our grid, and then let’s identify the same 
horizontal padding for our grid, col-1-3, and col-2-3 classes. With commas 
separating our selectors again, our CSS looks like this:

1. .grid,

2. .col-1-3,

3. .col-2-3 {

4. padding-left: 15px;

5. padding-right: 15px;

6. }

4. When we’re setting up the horizontal padding, we’ll need to be careful. Remember, 
in the last lesson we created a container element, known by the class of container, 
to center all of our content on a page within a 960-pixel-wide element. Currently if 
we were to put an element with the class of grid inside an element with the class 



92 Learn to Code HTML & CSS

of container, their horizontal paddings would add to one another, and our columns 
would not appear proportionate to the width of the rest of the page.

We don’t want this to happen, so instead, we’ll have to share some of the styles from 
the container rule set with the grid rule set. Specifically, we’ll need to share the 
width property and values (to make sure our page stays fixed at 960 pixels wide)  
and the margin property and values (to center any element with the class of grid  
on the page).

We’ll accomplish this by breaking up the old container rule set into the following:

1. .container,

2. .grid {

3. margin: 0 auto;

4. width: 960px;

5. }

6. .container {

7. padding-left: 30px;

8. padding-right: 30px;

9. }

Now any element with the class of container or grid will be 960 pixels wide and 
centered on the page. Additionally, we’ve preserved the existing horizontal padding 
for any element with the class of container by moving it into a new, separate rule set.

5. All right—all of the heavy lifting needed to get our reusable grid styles into place is 
finished. Now it’s time to work in our HTML and to see how these classes perform.

We’ll begin with the teasers on the home page, within our index.html file, aligning 
them into three columns. Currently, the teasers are wrapped in a <section> element 
with the class of container. We’ll want to change that class from container to 
grid so that we can begin placing columns within it.

1. <section class="grid">

2. ...

3. </section>

6. Next, we’ll want to add a class of col-1-3 to each of the <section> elements within 
the <section> element with the class of grid.

1. <section class="grid">

2.

3. <section class="col-1-3">

4. ...



Lesson 5 · Positioning Content  93

5. </section>

6.

7. <section class="col-1-3">

8. ...

9. </section>

10.

11. <section class="col-1-3">

12. ...

13. </section>

14.

15. </section>

7. And lastly, because each of our columns is an inline-block element, we’ll want to 
make sure we remove the empty white space between them. We’ll use comments 
to do this, and we’ll add a little bit of documentation noting each upcoming section 
while we’re at it to better organize our code.

1. <section class="grid">

2.

3. <!-- Speakers -->

4.

5. <section class="col-1-3">

6. ...

7. </section><!--

8.

9. Schedule

10.

11. --><section class="col-1-3">

12. ...

13. </section><!--

14.

15. Venue

16.

17. -->section class="col-1-3">

18. ...

19. </section>

20.

21. </section>



94 Learn to Code HTML & CSS

To review, on line 3 we leave a comment identifying the “Speakers” section to follow. 
At the end of line 7, we open a comment immediately after the closing </section> 
tag. Within that comment, on line 9 we identify the “Schedule” section to come. We 
then close the comment at the beginning of line 11, just before the opening <section> 
tag. This same comment structure reappears on lines 13 through 17 between the two 
<section> elements, right before the “Venue” section. In all, we’ve commented out 
any potential white space between the columns while also using those comments to 
identify our sections.

We now have a reusable three-column grid that supports multiple arrangements, using 
both one-third- and two-thirds-width columns. Our home page now has three columns, 
breaking up all the different teasers, as shown in Figure 5.10.

The source code for the exercises within this lesson can be found at  
http://learn.shayhowe.com/html-css/positioning-content/.

Figure 5.10 Our Styles Conference home page now includes a three-column layout

http://learn.shayhowe.com/html-css/positioning-content/


Lesson 5 · Positioning Content  95

Uniquely Positioning Elements
Every now and then we’ll want to precisely position an element, but floats or inline-block 
elements won’t do the trick. Floats, which remove an element from the flow of a page, 
often produce unwanted results as surrounding elements flow around the floated element. 
Inline-block elements, unless we’re creating columns, can be fairly awkward to get into 
the proper position. For these situations we can use the position property in connection 
with box offset properties.

The position property identifies how an element is positioned on a page and whether or 
not it will appear within the normal flow of a document. This is used in conjunction with 
the box offset properties—top, right, bottom, and left—which identify exactly where 
an element will be positioned by moving elements in a number of different directions.

By default every element has a position value of static, which means that it exists 
in the normal flow of a document and it doesn’t accept any box offset properties. The 
static value is most commonly overwritten with a relative or absolute value, which 
we’ll examine next.

Relative Positioning
The relative value for the position property allows elements to 
appear within the normal flow a page, leaving space for an element 
as intended while not allowing other elements to flow around it; 
however, it also allows an element’s display position to be modified 
with the box offset properties. For example, consider the following 
HTML and CSS (see Figure 5.11):

HTML

1. <div>...</div>

2. <div class="offset">...</div>

3. <div>...</div>

<div>

<div class=
"offset">

<div>

<div class=
"offset">

Figure 5.11  
A relatively positioned 
element including left 
and top box offset 
properties



96 Learn to Code HTML & CSS

CSS

1. div {

2. border: 1px solid #949599;

3. height: 200px;

4. width: 200px;

5. }

6. .offset {

7. left: 20px;

8. position: relative;

9. top: 20px;

10. }

Here the second <div> element, the element with the class of offset, has a position 
value of relative and two box offset properties, left and top. This preserves the origi-
nal position of the element, and other elements are not allowed to move into this space. 
Additionally, the box offset properties reposition the element, pushing it 20 pixels from 
the left and 20 pixels from the top of its original location.

With relatively positioned elements, it’s important to know that the box offset properties 
identify where an element will be moved from given its original position. Thus, the left 
property with a value of 20 pixels will actually push the element towards the right, from 
the left, 20 pixels. The top property with a value of 20 pixels, then, will push an element 
towards the bottom, from the top, 20 pixels.

When we position the element using the box offset properties, the element overlaps 
the element below it rather than moving that element down as the margin or padding 
properties would.

Absolute Positioning
The absolute value for the position property is different from the relative value in 
that an element with a position value of absolute will not appear within the normal 
flow of a document, and the original space and position of the absolutely positioned  
element will not be preserved.



Lesson 5 · Positioning Content  97

Additionally, absolutely positioned elements are moved in relation to their closest rela-
tively positioned parent element. Should a relatively positioned parent element not exist, 
the absolutely positioned element will be positioned in relation to the <body> element. 
That’s quite a bit of information; let’s take a look at how this works inside some code  
(see Figure 5.12):

HTML

1. <section>

2. <div class="offset">...</div>

3. </section>

CSS

1. section {

2. position: relative;

3. }

4. div {

5. position: absolute;

6. right: 20px;

7. top: 20px;

8. }

<section>
position: relative;

<div class="offset>
position: absolute;
right: 20px;
top: 20px;

Figure 5.12 An absolutely positioned element including right and  
top box offset properties

In this example the <section> element is relatively positioned but doesn’t include any 
box offset properties. Consequently its position doesn’t change. The <div> element with 
a class of offset includes a position value of absolute. Because the <section> ele-
ment is the closest relatively positioned parent element to the <div> element, the <div> 
element will be positioned in relation to the <section> element.



98 Learn to Code HTML & CSS

With relatively positioned elements, the box offset properties identify in which direction 
an element would be moved in relation to itself. With absolutely positioned elements, the 
box offset properties identify in which direction an element will be moved in relation to 
its closest relatively positioned parent element.

As a result of the right and top box offset properties, the <div> element will appear 20 
pixels from the right and 20 pixels from the top of the <section>.

Because the <div> element is absolutely positioned, it does not sit within the normal 
flow of the page and will overlap any surrounding elements. Additionally, the original 
position of the <div> is not preserved, and other elements are able to occupy that space.

Typically, most positioning can be handled without the use of the position property and 
box offset properties, but in certain cases they can be extremely helpful.

Summary
Learning how to position content within HTML and CSS is a huge step toward mastering 
the two languages. Add to this the box model, and we’re well on our way to becoming 
front-end developers.

To review, within this lesson we covered the following:

• What floats are and how to use them to position content

• How to clear and contain floated elements

• How to position content with inline-block elements

• How to remove the white space between inline-block elements

• How to uniquely position content with relatively and absolutely positioned elements

We’re adding new skills with each lesson, so let’s keep going. Next up, typography!



Lesson 6

Working with Typography

The field of web typography has grown substantially over time. 

There are a couple of different reasons for its rise in popularity; 

one widely acknowledged reason is the development of a system 

for embedding our own web fonts on a website.

In the past we were limited to a small number of typefaces that we  

could use on a website. These typefaces were the most commonly 

installed fonts on computers, so they were the most likely to 

render properly on-screen. If a font wasn’t installed on a computer, 

it wouldn’t render on the website either. Now, with the ability 

to embed fonts, we have a much larger palette of typefaces to 

choose from, including those that we add to a website.

While the ability to embed fonts gives us access to countless new 

typefaces, it’s also important for us to know the basic principles 

of typography. In this lesson we’re going to take a look at some of 

these basic principles and how to apply them to our web pages 

using HTML and CSS.



100 Learn to Code HTML & CSS

Typeface vs. Font

The terms “typeface” and “font” are often interchanged, causing confusion. Here is a 
breakdown of exactly what each term means.

A typeface is what we see. It is the artistic impression of how text looks, feels, and reads.

A font is a file that contains a typeface. Using a font on a computer allows the computer 
to access the typeface.

One way to help clarify the difference between a typeface and a font is to compare them 
to a song and an MP3. A typeface is very similar to a song in that it is a work of art. It is 
created by an artist or artists and is open to public interpretation. A font, on the other 
hand, is very similar to an MP3 in that it is not the artistic impression itself, but only a 
method of delivering the artistic value.

Adding Color to Text
Typically one of the first decisions we’ll make when building a website is choosing the 
primary typeface and text color to be used. While there are a number of other properties 
that can be changed—size, weight, and so on—the typeface and text color generally  
have the largest impact on the look and legibility of a page. Getting rid of the browser 
defaults and using our own typeface and text color immediately begins setting the tone 
of our page.

The only property we need to set the color of text is the color property. The color 
property accepts one color value, but in many different formats. These formats, as we 
discussed in Lesson 3, “Getting to Know CSS,” include keywords, hexadecimal values,  
and RGB, RGBa, HSL, and HSLa values. Hexadecimal values are the most prevalent, as 
they provide the most control with the least amount of effort.

Let’s take a look at the CSS required to change the color of all the text within the <html> 
element on a page:

1. html {

2. color: #555;

3. }



Lesson 6 · Working with Typography  101

Changing Font Properties
CSS offers a lot of different properties for editing the look and feel of text on a page. 
These properties fit into two categories: font-based properties and text-based properties. 
Most of these properties will be prefaced with either font-* or text-*. To begin we’ll 
discuss the font-based properties.

Font Family
The font-family property is used to declare which font—as well as which fallback or 
substitute fonts—should be used to display text. The value of the font-family property 
contains multiple font names, all comma separated.

The first declared font, starting from the left, is the primary font choice. Should the first 
font be unavailable, alternative fonts are declared after it in order of preference from left 
to right.

Font names consisting of two or more words need to be wrapped in quotation marks. 
Additionally, the last font should be a keyword value, which will use the system default 
font for the specified type, most commonly either sans-serif or serif.

The font-family property in action looks like this:

1. body {

2. font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;

3. }

In this case, Helvetica Neue is the preferred font to display. If this font is unavailable or 
not installed on a given device, the next font in the list—Helvetica—will be used, and so on.

Font Size
The font-size property provides the ability to set the size of text using common length 
values, including pixels, em units, percentages, points, or font-size keywords.

Here the CSS is setting a font-size of 14 pixels on the <body> element:

1. body {

2. font-size: 14px;

3. }



102 Learn to Code HTML & CSS

Font Style
To change text to italics, or to prevent text from being italicized, we’ll use the font-style 
property. The font-style property accepts four keyword values: normal, italic, 
oblique, and inherit. Of these four, the most commonly used are italic (sets text to 
italic) and normal (returns text to its normal style).

The following CSS sets all elements with a class of special to include a font-style  
of italic:

1. .special {

2. font-style: italic;

3. }

Font Variant
It doesn’t happen often, but occasionally text will need to be set in small capitals, also known 
as small caps. For this specific case we’ll use the font-variant property. The font-variant 
property accepts three values: normal, small-caps, and inherit. The most typically 
seen values are normal and small-caps, which are used to switch typefaces between 
normal and small caps variants.

To switch all elements with a class of firm, we’ll use a font-variant of small-caps:

1. .firm {

2. font-variant: small-caps;

3. }

Font Weight
Occasionally, we’ll want to style text as bold or to change the specific weight of a type-
face. For these cases we’ll use the font-weight property. The font-weight property 
accepts either keyword or numeric values.

Keyword values include normal, bold, bolder, lighter, and inherit. Of these keyword 
values, it is recommended to primarily use normal and bold to change text from normal 
to bold and vice versa. Rather than using the keyword values bolder or lighter, it’s better 
to use a numeric value for more specific control.



Lesson 6 · Working with Typography  103

In practice, here’s the CSS to set the font-weight to bold for any element with the class 
of daring:

1. .daring {

2. font-weight: bold;

3. }

The numeric values 100, 200, 300, 400, 500, 600, 700, 800, and 900 pertain specifically to 
typefaces that have multiple weights. The order of these weights starts with the thinnest 
weight, 100, and scales up to the thickest weight, 900. For reference, the keyword value of 
normal maps to 400 and the keyword bold maps to 700; thus, any numeric value below 
400 will be fairly thin, and any value above 700 will be fairly thick.

Changing the font-weight to 600 for any element with the class of daring now renders 
that text as semibold—not quite as thick as the bold keyword value from before:

1. .daring {

2. font-weight: 600;

3. }

Typeface Weights

Before using a numeric value, we need to check and see whether the typeface we are using 
comes in the weight we’d like to use. Attempting to use a weight that’s not available for a 
given typeface will cause those styles to default to the closest value.

For example, the Times New Roman typeface comes in two weights: normal, or 400, and 
bold, or 700. Attempting to use a weight of 900 will default the typeface to the closest 
related weight, 700 in this case.

Line Height
Line height, the distance between two lines of text (often referred to as leading) is 
declared using the line-height property. The line-height property accepts all general 
length values, which we covered in Lesson 3, “Getting to Know CSS.”

The best practice for legibility is to set the line-height to around one and a half times 
our font-size property value. This could be quickly accomplished by setting the line-
height to 150%, or just 1.5. However, if we’re working with a baseline grid, having a little 
more control over our line-height using pixels may be preferable.



104 Learn to Code HTML & CSS

Looking at the CSS, we’re setting a line-height of 22 pixels within the <body> element, 
thus placing 22 pixels between each line of text:

1. body {

2. line-height: 22px;

3. }

Line height may also be used to vertically center a single line of text within an element. 
Using the same property value for the line-height and height properties will vertically 
center the text:

1. .btn {

2. height: 22px;

3. line-height: 22px;

4. }

This technique may be seen with buttons, alert messages, and other single-line text 
blocks.

Shorthand Font Properties
All of the font-based properties listed earlier may be combined and rolled into one font 
property and shorthand value. The font property can accept multiple font-based prop-
erty values. The order of these property values should be as follows, from left to right: 
font-style, font-variant, font-weight, font-size, line-height, and font-family.

As a shorthand value, these property values are listed from left to right without the use  
of commas (except for font names, as the font-family property value uses commas).  
A forward slash, /, separator is needed between the font-size and line-height prop-
erty values.

When using this shorthand value, every property value is optional except the font-size 
and font-family property values. That said, we can include only the font-size and 
font-family property values in the shorthand value if we wish.

1. html {

2. font: italic small-caps bold 14px/22px "Helvetica Neue", 

  Helvetica, Arial, sans-serif;

3. }



Lesson 6 · Working with Typography  105

Font Properties All Together
Let’s take a look at an example that uses all these font-based properties together. The 
following HTML and CSS demonstrates the different possibilities when styling text; the final 
result of this code can be seen in Figure 6.1.

Figure 6.1 A sample blog post teaser using font-based properties

HTML

1. <h2><a href="#">I Am a Builder</a></h2>

2.

3. <p class="byline">Posted by Shay Howe</p>

4.

5. <p>Every day I see designers and developers working alongside one another. 

They work intelligently in pursuit of business objectives. They work 

diligently making exceptional products. They solve real problems and take 

pride in their work. They are builders. <a href="#">Continue&#8230;</a></p>

CSS

1. h2,

2. p {

3. color: #555;

4. font: 13px/20px "Helvetica Neue", Helvetica, Arial, sans-serif;

5. }

6. a {

7. color: #648880;

8. }

9. a:hover {

10. color: #293f50;

continues



106 Learn to Code HTML & CSS

11. }

12. h2 {

13. font-size: 22px;

14. font-weight: bold;

15. margin-bottom: 6px;

16. }

17. .byline {

18. color: #8c8c8c;

19. font-family: Georgia, Times, "Times New Roman", serif;

20. font-style: italic;

21. }

CSS Pseudo-Classes

The demonstration here uses the :hover CSS pseudo-class, something we’ve never seen 
before. For reference, pseudo-classes are keywords that may be added to the end of a 
selector to style an element when it’s in a unique state.

The :hover pseudo-class styles an element when a user hovers over that element. 
When used with the <a> element, as shown here, all <a> elements will receive unique 
styles when they are hovered over. Now our <a> elements will change color upon being 
hovered over.

In Practice
Diving back into our Styles Conference website, let’s start adding some font-based 
properties.

1. We’ll begin by updating the font on all of our text. To do this, we’ll apply styles to  
our <body> element. We’ll start with a color, and we’ll also add in font-weight, 
font-size, line-height, and font-family values by way of the font property  
and shorthand values.

In an attempt to keep our main.css file as organized as possible, let’s create a  
new section for these custom styles, placing it just below our reset and above our 
grid styles.



Lesson 6 · Working with Typography  107

We need to add the following:

1. /*

2. ========================================

3. Custom styles

4. ========================================

5. */

6.

7. body {

8. color: #888;

9. font: 300 16px/22px "Open Sans", "Helvetica Neue", Helvetica, 

  Arial, sans-serif;

10. }

2. In Lesson 4, “Opening the Box Model,” we began adding some typographic styles, 
specifically adding a bottom margin to a few different levels of headings and para-
graphs. Within the same section of the main.css file, let’s add a color to the level-
one through level-four headings.

1. h1, h2, h3, h4 {

2. color: #648880;

3. }

While we’re at it, let’s also add in font sizes for these different heading levels. Our 
<h1> and <h2> elements will use fairly large font-size values; consequently, we’ll 
also want to increase their line-height values to keep the text within these ele-
ments legible. For reference, we’ll make their line-height values 44 pixels, double 
the value of the base line-height set within the <body> element rule set.

1. h1 {

2. font-size: 36px;

3. line-height: 44px;

4. }

5. h2 {

6. font-size: 24px;

7. line-height: 44px;

8. }

9. h3 {

10. font-size: 21px;

11. }

continues



108 Learn to Code HTML & CSS

12. h4 {

13. font-size: 18px;

14. }

3. Our <h5> elements are going to be a little more unique than the rest of our headings. 
Accordingly, we’re going to change their styles a bit.

We’ll use a different color property value and a slightly smaller font-size for these 
elements, and we’re going to change the font-weight to 400, or normal.

By default, browsers render headings with a font-weight of bold. Our headings, 
however, are currently all set to a font-weight of 300. Our reset at the top of our 
main.css file changed the font-weight to normal, and then our font-weight of 
300 within the <body> element rule set changed all headings to a font-weight  
of 300.

The font-weight of 400 on the <h5> element will actually make it slightly thicker 
than the rest of our other headings and text.

1. h5 {

2. color: #a9b2b9;

3. font-size: 14px;

4. font-weight: 400;

5. }

4. Our reset at the beginning of our style sheet also reset the browser default styles for 
the <strong>, <cite>, and <em> elements, which we’ll want to add back in. For our 
<strong> elements we’ll want to set a font-weight of 400, which actually equates 
to normal, not bold, as the typeface we’re using is thicker than most typefaces. Then, 
for our <cite> and <em> elements we’ll want to set a font-style of italic.

1. strong {

2. font-weight: 400;

3. }

4. cite,

5. em {

6. font-style: italic;

7. }



Lesson 6 · Working with Typography  109

5. We’re on a roll, so let’s keep going by adding some styles to our anchor elements. 
Currently they are the browser default blue. Let’s make them the same color as our 
<h1> through <h4> heading elements. Additionally, let’s use the :hover pseudo-class 
to change the color to a light gray when a user hovers over an anchor.

1. /*

2. ========================================

3. Links

4. ========================================

5. */

6.

7. a {

8. color: #648880;

9. }

10. a:hover {

11. color: #a9b2b9;

12. }

6. Now let’s take a look at our <header> element and update our styles there. We’ll 
begin updating our logo by adding the font-size and line-height properties 
within the logo rule set. Adding to the existing border-top, float, and padding 
properties, the new rule set should look like this:

1. .logo {

2. border-top: 4px solid #648880;

3. float: left;

4. font-size: 48px;

5. line-height: 44px;

6. padding: 40px 0 22px 0;

7. }



110 Learn to Code HTML & CSS

7. Because we’ve bumped up the size of the logo quite a bit, let’s add a margin to the 
<h3> element within the <header> element to balance it. We’ll do so by placing 
a class attribute value of tagline on the <h3> element and then using that class 
within our CSS to apply the proper margins.

Let’s not forget that the changes to the <h3> element need to happen on every page.

HTML

1. <h3 class="tagline">August 24&ndash;26th &mdash; Chicago, IL</h3>

CSS

1. .tagline {

2. margin: 66px 0 22px 0;

3. }

8. After the <h3> element with the class attribute value of tagline comes the <nav> 
element. Let’s add a class attribute value of primary-nav to the <nav> element 
and add font-size and font-weight properties to make the navigation stand out 
against the rest of the header.

HTML

1. <nav class="primary-nav">

2. ...

3. </nav>

CSS

1. .primary-nav {

2. font-size: 14px;

3. font-weight: 400;

4. }

9. With the <header> element in slightly better shape, let’s also take a look at our 
<footer> element. Using the primary-footer class, let’s change the color and 
font-size for all the text within the <footer> element. Additionally, let’s bump up 
the font-weight of the <small> element to 400.



Lesson 6 · Working with Typography  111

Including the existing styles, the styles for our primary footer section should look  
like this:

1. .primary-footer {

2. color: #648880;

3. font-size: 14px;

4. padding-bottom: 44px;

5. padding-top: 44px;

6. }

7. .primary-footer small {

8. float: left;

9. font-weight: 400;

10. }

10. Let’s update our home page a bit, too. We’ll start with the hero section, increasing 
the overall line-height of the section to 44 pixels. We’ll also make the text within 
this section larger, increasing the <h2> element’s font-size to 36 pixels and the <p> 
element’s font-size to 24 pixels.

We can make all of these changes by using the existing hero class selector and  
creating new selectors for the <h2> and <p> elements. Our styles for the hero section 
will now break down in this way:

1. .hero {

2. line-height: 44px;

3. padding: 22px 80px 66px 80px;

4. }

5. .hero h2 {

6. font-size: 36px;

7. }

8. .hero p {

9. font-size: 24px;

10. }

11. Lastly, we have one small issue to fix on our home page. Previously we gave all of 
our anchor elements a light gray color value when a user hovers over them. This 
works great, except for within the three teasers on our home page where the anchor 
element wraps both <h3> and <h5> elements. Because the <h3> and <h5> elements 
have their own color definition, they are not affected by the :hover pseudo-class 
styles from before.



112 Learn to Code HTML & CSS

Fortunately we can fix this, although it’s going to require a fairly complicated selector. 
We’ll begin by adding a class attribute value of teaser to all three columns on the 
home page. We’ll use this class as a qualifying selector shortly.

1. <section class="grid">

2.

3. <!-- Speakers -->

4.

5. <section class="teaser col-1-3">

6. <a href="speakers.html">

7. <h5>Speakers</h5>

8. <h3>World-Class Speakers</h3>

9. </a>

10. <p>Joining us from all around the world are over twenty 

    fantastic speakers, here to share their stories.</p>

11. </section>

12.

13. ...

14.

15. </section>

With a qualifying class in place, we’re ready to do some CSS heavy lifting and create 
a fairly complex selector. We’ll begin our selector with the teaser class, as we only 
want to target elements within an element with the class of teaser. From there we 
want to apply styles to elements that reside within anchor elements that are being 
hovered over; thus we’ll add the a type selector along with the :hover pseudo-class. 
Lastly, we’ll add the h3 type selector to select the actual <h3> elements we wish to 
apply styles to.

Altogether, our selector and styles for these <h3> elements will look like this:

1. .teaser a:hover h3 {

2. color: #a9b2b9;

3. }



Lesson 6 · Working with Typography  113

Whew, that was quite a bit. The good news is that our Styles Conference home page is 
starting to look really nice and is showing a bit of personality (see Figure 6.2).

Figure 6.2 Our Styles Conference website has received quite a bit of love from a handful of font-based 
properties

Applying Text Properties
Knowing how to set the family, size, style, variant, weight, and line height of a font is only 
half the battle. Additionally we can decide how to align, decorate, indent, transform, and 
space text. Let’s start with text alignment.



114 Learn to Code HTML & CSS

Text Align
Aligning text is an important part of building a rhythm and flow on a page; we do this 
using the text-align property. The text-align property has five values: left, right, 
center, justify, and inherit. All of these values are fairly straightforward; as expected, 
they align text to the left, right, or center, or they justify text.

The following CSS sets all paragraph text to be center aligned:

1. p {

2. text-align: center;

3. }

The text-align property, however, should not be confused with the float property. The 
text-align values left and right will align text within an element to the left or right, 
whereas the float values left and right will move the entire element. Sometimes the 
text-align property will give us the desired outcome, and other times we may need to 
use the float property.

Text Decoration
The text-decoration property provides a handful of ways to spruce up text. It accepts 
the keyword values of none, underline, overline, line-through, and inherit. Use 
of the text-decoration property varies, but the most popular use is to underline links, 
which is a default browser style.

Here the CSS styles any element with the class of note with a text-decoration of 
underline:

1. .note {

2. text-decoration: underline;

3. }

Multiple text-decoration values may be applied to an element at once by space- 
separating each keyword within the value.



Lesson 6 · Working with Typography  115

Text Indent
The text-indent property can be used to indent the first line of text within an element, 
as is commonly seen in printed publications. All common length values are available for 
this property, including pixels, points, percentages, and so on. Positive values will indent 
text inward, while negative values will indent text outward.

Here, the CSS indents the text for all <p> elements inward by 20 pixels:

1. p {

2. text-indent: 20px;

3. }

Text Shadow
The text-shadow property allows us to add a shadow or multiple shadows to text. The 
property generally takes four values, all listed one after the other from left to right. The first 
three values are lengths, and the last value is a color.

Within the three length values, the first value determines the shadow’s horizontal offset, 
the second value determines the shadow’s vertical offset, and the third value determines 
the shadow’s blur radius. The fourth, and last, value is the shadow’s color, which can be 
any of the color values used within the color property.

The text-shadow property here is casting a 30% opaque black shadow 3 pixels towards 
the right, 6 pixels down, and blurred 2 pixels off all <p> element text:

1. p {

2. text-shadow: 3px 6px 2px rgba(0, 0, 0, .3);

3. }

Using negative length values for the horizontal and vertical offsets allows us to move 
shadows toward the left and the top.

Multiple text shadows can also be chained together using comma-separated values, add-
ing more than one shadow to the text. Using numerous shadows allows us to place them 
above and below the text, or in any variation we desire.



116 Learn to Code HTML & CSS

Box Shadow

The text-shadow property places a shadow specifically on the text of an element. If we’d 
like to place a shadow on the element as a whole, we can use the box-shadow property. 
The box-shadow property works just like the text-shadow property, accepting values for 
horizontal and vertical offsets, a blur, and a color.

The box-shadow property also accepts an optional fourth length value, before the color 
value, for the spread of a shadow. As a positive length value, the spread will expand the 
shadow larger than the size of the element it’s applied to, and as a negative length value 
the spread will shrink the shadow to be smaller than the size of the element it’s applied to.

Lastly, the box-shadow property may include an optional inset value at the beginning of 
the value to place the shadow inside an element as opposed to outside the element.

Text Transform
Similar to the font-variant property, there is the text-transform property. While the 
font-variant property looks for an alternate variant of a typeface, the text-transform 
property will change the text inline without the need for an alternate typeface. The text-
transform property accepts five values: none, capitalize, uppercase, lowercase, and 
inherit.

The capitalize value will capitalize the first letter of each word, the uppercase value 
will capitalize every letter, and the lowercase value will make every letter lowercase. 
Using none will return any of these inherited values back to the original text style.

The following CSS sets all <p> element text to appear in all uppercase letters:

1. p {

2. text-transform: uppercase;

3. }



Lesson 6 · Working with Typography  117

Letter Spacing
Using the letter-spacing property, we can adjust the space (or tracking) between the 
letters on a page. A positive length value will push letters farther apart from one another, 
while a negative length value will pull letters closer together. The keyword value none  
will return the space between letters back to its normal size.

Using a relative length value with the letter-spacing property will help ensure that we 
maintain the correct spacing between letters as the font-size of the text is changed.  
It is, however, always a good idea to double-check our work.

With the CSS here, all of the letters within our <p> elements will appear .5 em  
closer together:

1. p {

2. letter-spacing: -.5em;

3. }

Word Spacing
Much like the letter-spacing property, we can also adjust the space between words 
within an element using the word-spacing property. The word-spacing property 
accepts the same length values and keywords as the letter-spacing property. Instead  
of spacing letters apart, though, the word-spacing property applies those values 
between words.

Here every word within a <p> element will be spaced .25 em apart.

1. p {

2. word-spacing: .25em;

3. }



118 Learn to Code HTML & CSS

Text Properties All Together
Let’s revisit our blog teaser demonstration from before, this time adding in a few  
text-based properties on top of our font-based properties. The result can be seen  
in Figure 6.3.

Figure 6.3 A sample blog post teaser using font-based and text-based properties

HTML

1. <h2><a href="#">I Am a Builder</a></h2>

2.

3. <p class="byline">Posted by Shay Howe</p>

4.

5. <p class="intro">Every day I see designers and developers working 

alongside one another. They work intelligently in pursuit of 

business objectives. They work diligently making exceptional 

products. They solve real problems and take pride in their work. 

They are builders. <a href="#">Continue&#8230;</a></p>

CSS

1. h2,

2. p {

3. color: #555;

4. font: 13px/20px "Helvetica Neue", Helvetica, Arial, sans-serif;

5. }

6. a {

7. color: #648880;

8. }

9. a:hover {

10. color: #293f50;

11. }



Lesson 6 · Working with Typography  119

12. h2 {

13. font-size: 22px;

14. font-weight: bold;

15. letter-spacing: -.02em;

16. margin-bottom: 6px;

17. }

18. h2 a {

19. text-decoration: none;

20. text-shadow: 2px 2px 1px rgba(0, 0, 0, .2);

21. }

22. .byline {

23. color: #8c8c8c;

24. font-family: Georgia, Times, "Times New Roman", serif;

25. font-style: italic;

26. }

27. .intro {

28. text-indent: 15px;

29. }

30. .intro a {

31. font-size: 11px;

32. font-weight: bold;

33. text-decoration: underline;

34. text-transform: uppercase;

35. }

In Practice
With text-based properties under our belts, let’s jump back into our Styles Conference 
website and put them to work.

1. Currently every link on the page is underlined, which is the default style for anchor 
elements. This style is a little overbearing at times, though, so we’re going to change 
it up a bit.

Adding to our links section within our main.css file, we’ll begin by removing the 
underline from all anchor elements by way of the text-decoration property. Next, 
we’ll select all anchor elements that appear within a paragraph element and give 
them a bottom border.



120 Learn to Code HTML & CSS

We could use the text-decoration property instead of the border-bottom property 
to underline all the links within each paragraph; however, by using the border-bottom 
property we have more control over the underline’s appearance. Here, for example, 
the underline will be a different color than the text itself.

Our links section, which includes our previous hover styles, should look like this:

1. a {

2. color: #648880;

3. text-decoration: none;

4. }

5. a:hover {

6. color: #a9b2b9;

7. }

8. p a {

9. border-bottom: 1px solid #dfe2e5;

10. }

2. Going back to our <h5> elements from before, which have slightly different styles than 
the rest of the headings, let’s make them all uppercase using the text-transform 
property. Our new <h5> element styles should look like this:

1. h5 {

2. color: #a9b2b9;

3. font-size: 14px;

4. font-weight: 400;

5. text-transform: uppercase;

6. }

3. Let’s revisit our <header> element to apply additional styles to our navigation menu 
(to which we previously added the primary-nav class attribute value). After the exist-
ing font-size and font-weight properties, let’s add some slight letter-spacing 
and change our text to all uppercase via the text-transform property.

Our styles for the <nav> element with the primary-nav class attribute value should 
now look like this:

1. .primary-nav {

2. font-size: 14px;

3. font-weight: 400;

4. letter-spacing: .5px;

5. text-transform: uppercase;

6. }



Lesson 6 · Working with Typography  121

4. Previously, we floated our logo to the left within the <header> element. Now our 
tagline sits directly to the right of the logo; however, we’d like it to appear all the way 
to the right of the <header> element, flush right.

We need to add the text-align property with a value of right to the <h3> element 
with the class attribute value of tagline to get the tagline to sit all the way to the right.

When added to the existing margin property, our new styles for the <h3> element 
with the class attribute value of tagline will look like this:

1. .tagline {

2. margin: 66px 0 22px 0;

3. text-align: right;

4. }

5. We’d also like our navigation menus, both in the <header> and <footer> elements, 
to sit flush right. Because both the <header> and <footer> elements have child ele-
ments that are floated to the left, we can use the same approach as we did with  
our tagline.

The floated elements within the <header> and <footer> elements are taken out of 
the normal flow of the page, and this causes other elements to wrap around them. 
In this specific case, our navigation menus are the elements wrapping around the 
floated elements.

Because we’ll be sharing the same styles across both navigation menus, we’ll give 
them each the class of nav. Our <header> element will now look like this:

1. <header class="container group">

2.

3. <h1 class="logo">...</h1>

4.

5. <h3 class="tagline">...</h3>

6.

7. <nav class="nav primary-nav">

8. ...

9. </nav>

10.

11. </header>



122 Learn to Code HTML & CSS

And our <footer> element will now look like this:

1. <footer class="primary-footer container group">

2.

3. <small>...</small>

4.

5. <nav class="nav">

6. ...

7. </nav>

8.

9. </footer>

Let’s not forget, changes to our <header> and <footer> elements need to be made 
on every page.

6. With the nav class in place on both navigation menus, let’s create a new section 
within our main.css file to add shared navigation styles. We’ll begin by adding the 
text-align property with a value of right to a nav class rule set. We’ll expand 
these styles later on, but this will serve as a great foundation.

1. /*

2. ========================================

3. Navigation

4. ========================================

5. */

6.

7. .nav {

8. text-align: right;

9. }

7. While we’re adding the text-align property to a few different elements, let’s also 
add the text-align property with a value of center to our hero class selector rule 
set. For reference, these styles, including our existing line-height and padding 
properties, are located within the home page section of our main.css file.

1. .hero {

2. line-height: 44px;

3. padding: 22px 80px 66px 80px;

4. text-align: center;

5. }



Lesson 6 · Working with Typography  123

Our Styles Conference now has some serious style. (Bad joke, sorry.) Seriously, though, 
all of our styles are coming along quite well, and our website is progressing, as shown in 
Figure 6.4.

Figure 6.4 Our Styles Conference website is coming along quite well after adding a few text-based 
properties

Using Web-Safe Fonts
By default there are a few fonts that are pre-installed on every computer, tablet, smart-
phone, or other web-browsing-capable device. Because they’ve been installed on every 
device, we can use these fonts freely within our websites, knowing that no matter what 
device is browsing our site, the font will render properly. These fonts have become known 



124 Learn to Code HTML & CSS

as “web-safe fonts.” There are only a handful of them, and the safest of the web-safe 
fonts are listed here:

• Arial

• Courier New, Courier

• Garamond

• Georgia

• Lucida Sans, Lucida Grande, Lucida

• Palatino Linotype

• Tahoma

• Times New Roman, Times

• Trebuchet

• Verdana

Embedding Web Fonts
We also have the ability to upload fonts to a server and include them on a website via the 
CSS @font-face at-rule. This capability has done wonders for online typography. Now, 
more than ever, typography is coming to life online.

Embedding our own web fonts looks a bit like the following CSS. First, we use the @font-face 
at-rule to identify our font’s name, via the font-family property, as well as the source of 
our font (the path to the font file containing our chosen font), via the src property. From 
there we are able to use this font by including its name within any font-family property 
value. See Figure 6.5.

1. @font-face {

2. font-family: "Lobster";

3. src: local("Lobster"), url("lobster.woff") format("woff");

4. }

5. body {

6. font-family: "Lobster", "Comic Sans", cursive;

7. }

Figure 6.5 By using a web font, we are able to use a typeface that would otherwise be unavailable



Lesson 6 · Working with Typography  125

Having the ability to embed any typeface on a website does not mean we legally have the 
authority to do so. Typefaces are works of art, and posting them on our server may allow 
others to easily steal them. The authority to use a typeface depends on the licensing 
we’ve been warranted.

Fortunately, the value of using new typefaces online has been recognized, and companies 
have begun developing ways to license and include new fonts on websites. Some of these 
companies, like Typekit and Fontdeck, work off a subscription model for licensing fonts, 
while others, like Google Fonts, license the fonts for free. Before uploading any fonts, let’s 
make sure we have permission to do so.

In Practice
To add a little character to our Styles Conference website, let’s try using a Google Font on 
our website.

1. Let’s head over to the Google Fonts website (www.google.com/fonts) and search for 
the font we’d like to use: Lato. Once we’ve found it, let’s proceed with adding it to our 
collection and following the steps on their website to use the font.

When the time comes to choose which font weights we’d like to use, let’s make sure 
to select 300 and 400, as we’ve already been using those within our CSS. Let’s also 
add 100 to the collection for another variation, too.

Google will give us an additional <link> element to include in the <head> element 
of all of our pages. We’ll place this new <link> element directly below our existing 
<link> element. The new element will include the proper style sheet reference to 
Google, which will take care of including a new CSS file with the proper @font-face 
at-rule necessary for us to use the Lato font.

With the addition of the new <link> element, our <head> element will look like this:

1. <head>

2. <meta charset="utf-8">

3. <title>Styles Conference</title>

4. <link rel="stylesheet" href="assets/stylesheets/main.css">

5. <link rel="stylesheet"

href="http://fonts.googleapis.com/css?family=Lato:100,300,400">

6. </head>

http://www.google.com/fonts


126 Learn to Code HTML & CSS

2. Once we have added the new <link> element to all of our pages, we are ready to 
begin using the Lato font. We’ll do so by adding it to our primary font stack within 
the font property inside our <body> element styles.

Let’s add Lato to the beginning of our font stack to make it "Lato", "Open Sans", 
"Helvetica Neue", Helvetica, Arial, sans-serif.

Although Lato is a single word, because it is an embedded web font we’ll want to 
surround it with quotation marks within any CSS reference. Our new <body> element 
styles will look like this:

1. body {

2. color: #888;

3. font: 300 16px/22px "Lato", "Open Sans", "Helvetica Neue", 

  Helvetica, Arial, sans-serif;

4. }

3. Lato should now be up and running, visible in all of our text across the Styles  
Conference website. Let’s take a closer look at our logo and update it a bit.

Within our logo class selector rule set, we’ll begin by adding the font-weight property 
with a value of 100 to make the text fairly thin. We’ll also use the text-transform 
property with a value of uppercase to make all of the letters uppercase, as well as 
the letter-spacing property with a value of .5 pixels to add a tiny bit of space 
between each letter within the logo.

Altogether the styles for our logo will look like this:

1. .logo {

2. border-top: 4px solid #648880;

3. float: left;

4. font-size: 48px;

5. font-weight: 100;

6. letter-spacing: .5px;

7. line-height: 44px;

8. padding: 40px 0 22px 0;

9. text-transform: uppercase;

10. }



Lesson 6 · Working with Typography  127

4. Because we have a font-weight property value of 100 available, let’s also set the 
paragraph element within our hero section to that weight. We can use the existing 
selector to do so, and the new rule set will look like this:

1. .hero p {

2. font-size: 24px;

3. font-weight: 100;

4. }

Our Styles Conference website has taken quite a few large steps this lesson, and the  
look and feel of our website is starting to really shine (see Figure 6.6).

The source code for the exercises within this lesson can be found at  
http://learn.shayhowe.com/html-css/working-with-typography/.

Figure 6.6 Our Styles Conference home page after adding the Lato Google web font

http://learn.shayhowe.com/html-css/working-with-typography/


128 Learn to Code HTML & CSS

Including Citations & Quotes
Writing online sometimes involves citing different sources or quotations. All of the differ-
ent citation and quotation cases can be covered semantically in HTML using the <cite>, 
<q>, and <blockquote> elements. Because they are usually distinguished from regular 
text in appearance, we’ll discuss them here in the typography lesson.

Knowing when to use which element and attribute to properly mark up citations and 
quotes takes a bit of practice. In general, follow these rules:

• <cite>: Used to reference a creative work, author, or resource

• <q>: Used for short, inline quotations

• <blockquote>: Used for longer external quotations

Citing a Creative Work
The <cite> inline element is used in HTML to specifically cite a creative work; the ele-
ment must include either the title of the work, the author’s name, or a URL reference to 
the work. By default, content wrapped within the <cite> element will appear in italics 
within the browser.

For additional reference, it helps to include a hyperlink to the original source of the citation 
when relevant.

Here the book Steve Jobs, by Walter Isaacson, is referenced within the <cite> element 
(see Figure 6.7). Inside the citation is also a hyperlink to the book.

1. <p>The book <cite><a href="http://www.amazon.com/Steve-Jobs-Walter-

Isaacson/dp/1451648537">Steve Jobs</a></cite> is truly inspirational.</p>

Figure 6.7 A citation of the book Steve Jobs using the <cite> element



Lesson 6 · Working with Typography  129

Dialogue & Prose Quotation
Quite often, dialogue or prose is quoted inline, within other text. For this purpose, the 
<q> (or quote) inline element should be applied. The <q> element semantically indicates 
quoted dialogue or prose and shouldn’t be used for any other purposes.

By default, the browser will insert the proper quotation marks for us and will even change 
the quotation marks based on the language identified within the lang global attribute.

Here’s an example:

1. <p>Steve Jobs once said, <q>One home run is much better than two 

doubles.</q></p>

Dialogue & Prose Citation
An optional attribute to include on the <q> element is the cite attribute. The cite attri-
bute acts as a citation reference to the quote in the form of a URL. This attribute doesn’t 
alter the appearance of the element; it simply adds value for screen readers and other 
devices. Because the attribute isn’t viewable within the browser, it’s also helpful to provide 
a hyperlink to this source next to the actual quotation.

Here’s an example, which can also be seen in Figure 6.8:

1. <p><a href="http://www.businessweek.com/magazine/content/

06_06/b3970001.htm">Steve Jobs</a> once said, <q 

cite="http://www.businessweek.com/magazine/content/06_06/b3970001.htm">

One home run is much better than two doubles.</q></p>

Figure 6.8 An inline quotation by Steve Jobs referenced from Businessweek



130 Learn to Code HTML & CSS

External Quotation
To quote a large block of text that comes from an external source and spans several lines, 
we’ll use the <blockquote> element. The <blockquote> is a block-level element that 
may have other block-level elements nested inside it, including headings and paragraphs.

Here’s an example that uses the <blockquote> element:

1. <blockquote>

2. <p>&#8220;In most people&#8217;s vocabularies, design is a 

  veneer. It&#8217;s interior decorating. It&#8217;s the fabric of 

  the curtains, of the sofa. But to me, nothing could be further 

  from the meaning of design. Design is the fundamental soul of a 

  human-made creation that ends up expressing itself in successive 

  outer layers of the product.&#8221;</p>

3. </blockquote>

External Citation
Longer quotes used within the <blockquote> element will often include a citation. This 
citation may comprise both the cite attribute and the <cite> element.

The cite attribute can be included on the <blockquote> element—in the same way that 
it was used on the <q> element earlier—to provide a citation reference to the quote in the 
form of a URL. The <cite> element then can fall after the actual quote itself to specify 
the original source of the quote, if relevant.

The HTML here outlines an extended quote from Steve Jobs that originally appeared in 
Fortune magazine. The quotation is marked up using the <blockquote> element with a 
cite attribute to specify where the quote originally appeared. In the <blockquote> element, 
the <cite> element, along with an <a> element, provides an additional citation and refer-
ence for the quote that is visible to users (see Figure 6.9).

1. <blockquote cite="http://money.cnn.com/magazines/fortune/

fortune_archive/2000/01/24/272277/index.htm">

2. <p>&#8220;In most people&#8217;s vocabularies, design is a 

  veneer. It&#8217;s interior decorating. It&#8217;s the fabric of 

  the curtains, of the sofa. But to me, nothing could be further 

  from the meaning of design. Design is the fundamental soul of a 

  human-made creation that ends up expressing itself in successive 

  outer layers of the product.&#8221;</p>



Lesson 6 · Working with Typography  131

3. <p><cite>&#8212; Steve Jobs in <a href="http://money.cnn.com/

  magazines/fortune/fortune_archive/2000/01/24/272277/index.htm">

  Fortune Magazine</a></cite></p>

4. </blockquote>

Figure 6.9 An extended quote from Steve Jobs that originally appeared in Fortune Magazine

Summary
Learning how to style text is exciting, as our content can begin to convey some emotion. 
We can also start to play around with the hierarchy of our content, making our website 
more legible and digestible.

To quickly recap, within this lesson we discussed the following:

• Adding color to our text to enhance it

• Applying font-based properties, including font-family, font-size, font-style, 
font-weight, and more

• Applying text-based properties, including text-align, text-decoration,  
text-indent, text-shadow, and more

• The history behind web-safe fonts and how to embed our own web fonts

• How to properly mark up citations and quotations

Sharpening up our text and dabbling a bit with typography has brought our design along 
quite a way. Next, we’ll bring a little more color to our website by going over backgrounds 
and gradients.



Lesson 7

Setting Backgrounds 
& Gradients

Backgrounds have a significant impact on the design of a website. 

They help create a site’s look and feel, establish groupings, and 

assign priority, and they have a considerable influence on a 

website’s usability.

Within CSS, element backgrounds can be a solid color, an image, 

a gradient, or a combination of these. As we decide how to  

implement these backgrounds, we should keep in mind that 

every background contributes to the overall appearance of  

our website.

In this lesson we’re going to take a look at how to assign dif-

ferent types of backgrounds, including gradients, to elements; 

we’ll also play around with a handful of CSS3 properties specific 

to backgrounds.



Lesson 7 · Setting Backgrounds & Gradients  133

Adding a Background Color
The quickest way to add a background to an element is to add a single-color background 
using the background or background-color property. The background property accepts 
colors and images in shorthand form, while the background-color property is used 
strictly for setting solid background colors. Either property will work, and which one you 
decide to use depends on your preference as well as the case for which you’re using it.

1. div {

2. background-color: #b2b2b2;

3. }

When adding a background color, we have a few options for the values we can use. As with 
other color values, we can pick from keywords, hexadecimal codes, and RGB, RGBa, HSL, 
and HSLa values. Most commonly we’ll see hexadecimal values; however, we may occa-
sionally want to use RGBa or HSLa values for transparencies.

Transparent Backgrounds

When using an RGBa or HSLa value as a transparent background color, it’s a good idea 
to provide a fallback color, too, because not all browsers recognize RGBa or HSLa values. 
And when a browser comes across a value it doesn’t recognize, it will ignore it.

Fortunately, there is an easy way to provide a fallback background. CSS cascades from the 
top of a file to the bottom of a file; thus, we can use two background-color properties 
within a single rule set. The first background-color property will use a “safe” background 
color, such as a hexadecimal value, and the second background-color property will use 
an RGBa or HSLa value. Here, if a browser understands the RGBa or HSLa value it will 
render it, and if it doesn’t, it will fall back to the hexadecimal value above it.

1. div {

2. background-color: #b2b2b2;

3. background-color: rgba(0, 0, 0, .3);

4. }



134 Learn to Code HTML & CSS

Adding a Background Image
Besides adding a background color to an element, we can also add a background image. 
Background images work similarly to background colors; however, they offer a few addi-
tional properties to finesse the images. As before, we can use the background property 
with a shorthand value, or we can use the background-image property outright. No matter 
which property we use, there must be an image source identified using a url() function.

The url() function value will be the background image’s path, and the familiar rules for 
creating hyperlink paths apply here. Keep an eye out for different directories, and be sure 
to show exactly where the image resides. The path will be placed inside parentheses  
and quoted.

1. div {

2. background-image: url("alert.png");

3. }

Adding a background image solely using a url value can provide undesirable results, 
as by default the background image will repeat horizontally and vertically from the top 
left of the given element to fill up the element’s background. Thankfully we can use the 
background-repeat and background-position properties to control how or even 
whether the image repeats.

Background Repeat
By default, a background image will repeat indefinitely, both vertically and horizontally, 
unless otherwise specified. The background-repeat property may be used to change 
the direction in which a background image is repeated, if repeated at all.

1. div {

2. background-image: url("alert.png");

3. background-repeat: no-repeat;

4. }

The background-repeat property accepts four different values: repeat, repeat-x, 
repeat-y, and no-repeat. The repeat value is the default value and will repeat a back-
ground image both vertically and horizontally.

The repeat-x value will repeat the background image horizontally, while the repeat-y 
value will repeat the background image vertically. Lastly, the no-repeat value will tell the 
browser to display the background image once—that is, do not repeat it at all.



Lesson 7 · Setting Backgrounds & Gradients  135

Background Position
By default, background images are positioned at the left top corner of an element. How-
ever, by using the background-position property, we can control exactly where the 
background image is placed relative to that corner.

1. div {

2. background-image: url("alert.png");

3. background-position: 20px 10px;

4. background-repeat: no-repeat;

5. }

The background-position property requires two values: a horizontal offset (the first 
value) and a vertical offset (the second value). If only one value is specified, that value is 
used for both the horizontal and the vertical offsets.

Because we’re moving the background image from the left top corner of the element, 
length values specifically will be in relation to that corner.

To set a background-position value, we can use the top, right, bottom, and left key-
words, pixels, percentages, or any length measurement. Keywords and percentages work 
very similarly (see Figure 7.1). The keyword value left top is identical to the percentage 
value 0 0, which will keep an image positioned at the left top corner of the element. The 
keyword value right bottom is identical to the percentage value 100% 100%, which will 
position an image in the right bottom corner of the element.

0 0
left top

100% 0
right top

100% 0
left bottom

100% 100%
right bottom

Figure 7.1 Background images 
are positioned from the left 
top corner of an element

One advantage of percentages over keywords is the ability to center a background image 
by using 50% as a value. To center the background image at the top of an element, we can 
use the value 50% 0. Using pixels for a background-position value is also common, as 
pixels give us precise control over where our background will be positioned.



136 Learn to Code HTML & CSS

Shorthand Background Image Values
The background-color, background-image, background-position, and background-
repeat properties may be rolled up into a shorthand value for the background property 
alone. The order of these properties as a shorthand background property value may vary, 
however it commonly falls as background-color, background-image, background-
position, and then background-repeat.

1. div {

2. background: #b2b2b2 url("alert.png") 20px 10px no-repeat;

3. }

Background Image Example
In the following example, we’ll use the background property with a shorthand value  
that includes background-color, background-image, background-position, and 
background-repeat values.

Please take note that there is both a relative value and an absolute value within the 
background-position value. The first value, 20 pixels, is the horizontal value, position-
ing the background-image 20 pixels from the left of the element. The second value, 50%, 
is the vertical value, which vertically centers the background-image.

A few other properties and values are also included within the alert-success class rule 
set to further style the alert message (see Figure 7.2).

Figure 7.2 A success alert message including a background color and image

HTML

1. <div class="alert-success">

2. Woo hoo! Congratulations, you did it!

3. </div>

CSS

1. .alert-success {

2. background: #67b11c url("tick.png") 20px 50% no-repeat;



Lesson 7 · Setting Backgrounds & Gradients  137

3. border: 2px solid #467813;

4. border-radius: 5px;

5. color: #fff;

6. font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;

7. padding: 15px 20px 15px 50px;

8. }

In Practice
Returning to our Styles Conference website, let’s add some background colors. While we 
do that, we’ll change a few other styles to keep all of our styles working together and to 
keep all of our content legible.

1. We’ll begin by taking a big step and applying a blue background to the <body> 
element alongside the existing color and font properties. All of the styles for the 
<body> element rule set now include the following:

1. body {

2. background: #293f50;

3. color: #888;

4. font: 300 16px/22px "Lato", "Open Sans", "Helvetica Neue", 

  Helvetica, Arial, sans-serif;

5. }

We’ve placed a blue background on the <body> element purposely, as our website will 
have a few different rows of background colors, and the most frequent background 
color will be blue.

2. Now that every page on our Styles Conference website includes a blue background, 
let’s clean up a few areas that will keep that blue background. Specifically, our <header> 
and <footer> elements will remain blue, as will the hero section on the home page.

Within our <header> and <footer> elements let’s make all of our link colors start as 
white and then, when hovered over, turn the same green as our headings.

We’ll begin with our <header> element. In order to select all <a> elements within the 
<header> element, we’ll add a class of primary-header to the <header> element (in  
addition to the existing container and group classes). Don’t forget, we’ll need to 
add this class to the <header> elements across all of our pages.

1. <header class="primary-header container group">

2. ...

3. </header>



138 Learn to Code HTML & CSS

With the primary-header class in place on the <header> element, and the existing 
primary-footer class in place on the <footer> element, we can add two new rule 
sets to the bottom of the links section within our main.css file.

The first rule set will select all <a> elements within an element with the class attri-
bute value of primary-header or primary-footer and set their color to white, as 
defined by comma separating two individual selectors that share the same property 
and value. The second rule set will select the same <a> elements as before but will 
change their color to green when a user hovers over them.

1. .primary-header a,

2. .primary-footer a {

3. color: #fff;

4. }

5. .primary-header a:hover,

6. .primary-footer a:hover {

7. color: #648880;

8. }

3. While we’re making some of our text white, let’s make the text within the hero sec-
tion of our home page white also, as it will remain on a blue background. We have 
the existing hero class rule set available to add styles to, so let’s add our white text 
color there. In all, our hero class rule set should include the following:

1. .hero {

2. color: #fff;

3. line-height: 44px;

4. padding: 22px 80px 66px 80px;

5. text-align: center;

6. }

4. Also within the hero section of our home page, let’s clean up some of the button 
styles. We’ll begin by adding some new properties to our btn class rule set, within 
the buttons section of our main.css file.

Specifically, let’s set the button text color to white, make sure our cursor is always 
a pointer, increase the font-weight, add a small amount of letter-spacing, and 
change our text-transform to uppercase.

In all, our new btn class rule set should look like this:

1. .btn {

2. border-radius: 5px;

3. color: #fff;

4. cursor: pointer;



Lesson 7 · Setting Backgrounds & Gradients  139

5. display: inline-block;

6. font-weight: 400;

7. letter-spacing: .5px;

8. margin: 0;

9. text-transform: uppercase;

10. }

We’ll also clean up some of the alternate button styles by way of the btn-alt class 
rule set. Specifically, let’s make the buttons’ borders white and add hover styles 
including a white background and blue text color.

With all of the additions, our new btn-alt class rule set should look like this:

1. .btn-alt {

2. border: 1px solid #fff;

3. padding: 10px 30px;

4. }

5. .btn-alt:hover {

6. background: #fff;

7. color: #648880;

8. }

5. Now that we have all of the areas with blue backgrounds cleaned up, let’s add styles 
for the rows that have white backgrounds. Let’s create a new section within our main.
css file for rows, just below the clearfix section. Within this new rows section, let’s 
create a new class selector named row.

Within our new row class rule set, let’s add a white background, a minimum width 
of 960 pixels (to make sure our row elements are always larger than the width of our 
container or grid elements), and some vertical padding. Altogether our new row 
section within our main.css file should look like this:

1. /*

2. ========================================

3. Rows

4. ========================================

5. */

6.

7. .row {

8. background: #fff;

9. min-width: 960px;

10. padding: 66px 0 44px 0;

11. }



140 Learn to Code HTML & CSS

6. With our row class styles in place, let’s add a row with a white background to our 
home page. We’ll do this on our teasers section. Currently this area has a <section> 
element with the class of grid wrapping three additional <section> elements with 
the classes of teaser and col-1-3.

To add a white background to this section, we’re going to wrap all of these elements 
in an element with the class of row.

Because we’ll want the entire teasers section wrapped in a <section> element, 
we’re going to add a new <section> element with the class of row that surrounds 
the existing <section> element with the class of grid.

Having two <section> elements wrapping the exact same content diminishes 
semantic value. To correct this we’ll change the second <section> element, the one 
with the class of grid, to a <div> element. After all, at this point this element is only 
adding styles, not semantic meaning, and is appropriate as a <div> element.

The structure of our new teasers element should look like this:

1. <section class="row">

2. <div class="grid">

3.

4. <!-- Speakers -->

5.

6. <section class="teaser col-1-3">

7. ...

8. </section><!--

9.

10. Schedule

11.

12. --><section class="teaser col-1-3">

13. ...

14. </section><!--

15.

16. Venue

17.

18. --><section class="teaser col-1-3">

19. ...

20. </section>

21.

22. </div>

23. </section>



Lesson 7 · Setting Backgrounds & Gradients  141

It is amazing how a few background colors can affect the design of a website. Our  
Styles Conference website is coming along quite nicely, and our home page, as shown  
in Figure 7.3, is proof.

Figure 7.3 Our Styles Conference website home page after adding some background colors



142 Learn to Code HTML & CSS

Designing Gradient Backgrounds
Gradient backgrounds were introduced with CSS3, and designers and front-end developers 
everywhere rejoiced. Although gradient backgrounds do not work in legacy browsers, 
they are supported by all modern browsers.

Within CSS, gradient backgrounds are treated as background images. We can create a 
gradient using the background or background-image properties, just like a regular back-
ground image. The property value for a gradient background varies depending on what 
type of gradient we’d like, linear or radial.

Gradient Background Vendor Prefixes

In Lesson 4, “Opening the Box Model,” we discussed adding vendor prefixes to new 
CSS properties or values so that browsers can support recently developed CSS features. 
Gradient background values were one of the values that required the use of vendor pre-
fixes. Fortunately, most browsers have since eliminated the need for a vendor prefix in 
order to render a gradient background; however, it is still worth outlining vendor prefixes 
to ensure the best support.

At first, as we begin discussing linear gradient backgrounds, we’ll include each of the 
different vendor prefixes. After that, in the interest of brevity, we’ll omit the different 
prefixes as we continue to discuss gradient backgrounds, including radial gradient 
backgrounds.

Linear Gradient Background
For years designers and developers have been cutting up gradient image files, created 
using image-processing software, and using them as linear gradient backgrounds on 
elements. The process worked, but it took a while to implement and was very inflexible. 
Fortunately those days are gone, and linear gradient backgrounds can now be specified 
within CSS. If a color needs changing, there is no need to reproduce and recut an image 
and upload it to the server. Now all we need to do is change a quick value within CSS (see 
Figure 7.4). Beautiful.

1. div {

2. background: #466368;

3. background: -webkit-linear-gradient(#648880, #293f50);



Lesson 7 · Setting Backgrounds & Gradients  143

4. background:    -moz-linear-gradient(#648880, #293f50);

5. background:         linear-gradient(#648880, #293f50);

6. }

Figure 7.4 A linear gradient background 
transitioning from the top to the bottom 
of an element

Linear gradients are identified by using the linear-gradient() function within the 
background or background-image property. The linear-gradient() function must 
include two color values, the first of which will be the beginning color value and the sec-
ond of which will be the ending color value. The browser will then handle the transition 
between the two colors.

Before any gradient backgrounds are identified, we’ll also put in a default background 
property with a solid color. The solid color is to be used as a fallback should a browser not 
support gradient backgrounds.

Changing the Direction of a 
Gradient Background
By default, linear gradient backgrounds move from the top to the bottom of an element, 
transitioning smoothly between the first color value and the second. This direction,  
however, may be changed with the use of keywords or a degree value stated before any 
color values.



144 Learn to Code HTML & CSS

For example, should we want a gradient to move from the left of an element to the right, 
we can use the keyword value to right to identify the direction in which the linear  
gradient should progress. Keyword values may also be combined. If we want the gradient  
to move from the left top to the right bottom of an element, we can use the keyword 
value of to right bottom (see Figure 7.5).

1. div {

2. background: #466368;

3. background: linear-gradient(to right bottom, #648880, #293f50);

4. }

Figure 7.5 A linear gradient background 
transitioning from the left top to the right 
bottom of an element

When we use a diagonal gradient on an element that isn’t exactly square, the background 
gradient will not proceed directly from one corner to the other. Instead, the gradient will 
identify the absolute center of the element, place anchors in the perpendicular corners 
from where it should progress, and then move to the general direction of the corner stated  
within the value. These corners the gradient moves towards are called “magic corners,” as  
they are not absolute. Eric Meyer has done a wonderful job of outlining this syntax in his 
article “Linear Gradient Keywords” at http://meyerweb.com/eric/thoughts/2012/04/26/
lineargradient-keywords/.

Besides keywords, degree values are also acceptable. If we want our gradient to move to 
the left top of an element, we can use the degree value of 315deg, or if we want our gradient 
to move to the right bottom of an element, we can use the degree value of 135deg. This 
same concept can be applied for any degree value, 0 through 360.

http://meyerweb.com/eric/thoughts/2012/04/26/lineargradient-keywords/
http://meyerweb.com/eric/thoughts/2012/04/26/lineargradient-keywords/


Lesson 7 · Setting Backgrounds & Gradients  145

Radial Gradient Background
While the linear gradient is perfect for a gradient moving from one direction to another, 
often the need for a radial gradient arises (see Figure 7.6). Radial background gradients 
work just like linear gradients and share many of the same values. For radial gradients, 
instead of using the linear-gradient() function within the background or background-
image property, we’ll use the radial-gradient() function.

1. div {

2. background: #466368;

3. background: radial-gradient(#648880, #293f50);

4. }

Figure 7.6 A radial gradient background 
transitioning from the center of an  
element to the outside of an element

Radial gradients work from the inside to the outside of an element. Thus, the first color 
identified within the radial-gradient() function will sit in the absolute center of the 
element, and the second color will sit on the outside of an element. The browser will then 
create the transition between the two colors.

One of the primary differences between radial gradients and linear gradients is that radial 
gradients can be quite complex, with values for location, size, radius, and so forth. We’ll 
cover the basics, but please feel free to delve further into radial gradients, as they provide 
much more power than is outlined here.



146 Learn to Code HTML & CSS

CSS3 Gradient Background Generator

Working with CSS3 gradients by hand can be quite difficult at times, especially if you 
are new to them. Fortunately, a few CSS3 gradient generators (http://ie.microsoft.com/
testdrive/graphics/cssgradientbackgroundmaker/default.html) have popped up. Each 
generator works a little differently, and some provide more options than others. If you’re 
interested, I recommend doing some research to find the right generator for your needs.

Gradient Color Stops
At a minimum, gradient backgrounds will transition from one color to another; however, 
we may add multiple colors to a gradient and have the browser transition between all of 
them (see Figure 7.7). To do this we’ll add color stops to the given gradient function, with 
commas separating each color stop from the next.

1. div {

2. background: #648880;

3. background: linear-gradient(to right, #f6f1d3, #648880, #293f50);

4. }

Figure 7.7 A linear gradient background 
including three colors transitioning from 
the left to the right of an element

http://ie.microsoft.com/testdrive/graphics/cssgradientbackgroundmaker/default.html
http://ie.microsoft.com/testdrive/graphics/cssgradientbackgroundmaker/default.html


Lesson 7 · Setting Backgrounds & Gradients  147

By default, the browser will position every color stop an equal distance from the next  
and will transition between them accordingly. If more control over how colors are posi-
tioned is desired, a location along the gradient may be identified for each color stop. The 
location should be declared as a length value and should fall after the color value (see 
Figure 7.8).

1. div {

2. background: #648880;

3. background: linear-gradient(to right, #f6f1d3, #648880 85%, #293f50);

4. }

Figure 7.8 A linear gradient background, 
including three colors and their unique 
locations, transitioning from the left to 
the right of an element

Unless specified otherwise, the first color stop will be positioned at 0%, and the last color 
stop will be positioned at 100%.

Gradient Background Example
Using the same success alert message from before, we’ll swap out the old background 
image for a linear gradient background image.

For this we’ll include two background properties. The first background property specifies 
a solid color hexadecimal value, which serves as a fallback should a browser not support 
linear gradient backgrounds. The second background property includes the linear-
gradient() function, which identifies a green gradient background that transitions from 
the top of the element to the bottom of the element (see Figure 7.9).



148 Learn to Code HTML & CSS

Figure 7.9 A success alert message including a linear gradient background image

HTML

1. <div class="alert-success">

2. Woo hoo! Congratulations, you did it!

3. </div>

CSS

1. .alert-success {

2. background: #67b11c;

3. background: linear-gradient(#72c41f, #5c9e19);

4. border: 2px solid #467813;

5. border-radius: 5px;

6. color: #fff;

7. font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;

8. padding: 15px 20px;

9. }

In Practice
With gradient backgrounds now in the mix, let’s create a new row for our Styles Confer-
ence website, this time using a gradient.

1. We’ll create a new row with a gradient background by using the class of row-alt. 
Because the new row will share the same min-width property and value as the row 
class selector, we’ll combine these two selectors.

1. .row,

2. .row-alt {

3. min-width: 960px;

4. }

Next we’ll want to create new rule sets to apply styles specifically to the row-alt 
class selector. These new styles will include a gradient background that starts with 
green and transitions to yellow, from left to right.



Lesson 7 · Setting Backgrounds & Gradients  149

Using the linear-gradient() function with the appropriate values and vendor 
prefixes, we’ll add the gradient background to the row-alt class rule set. We’ll also 
include a single background color before the gradient background as a fallback, just 
in case a browser doesn’t support gradient backgrounds.

Lastly, we’ll also add in some vertical padding.

Our updated row section now looks like this:

1. .row,

2. .row-alt {

3. min-width: 960px;

4. }

5. .row {

6. background: #fff;

7. padding: 66px 0 44px 0;

8. }

9. .row-alt {

10. background: #cbe2c1;

11. background: -webkit-linear-gradient(to right, #a1d3b0, #f6f1d3);

12. background:    -moz-linear-gradient(to right, #a1d3b0, #f6f1d3);

13. background:         linear-gradient(to right, #a1d3b0, #f6f1d3);

14. padding: 44px 0 22px 0;

15. }

2. With our row-alt styles in place, let’s put them to use on all of our interior pages. 
Currently, all of our interior pages have a <section> element with a class of container. 
Then, inside each <section> element is an <h1> element containing the heading of 
the page.

We’re going to alter these <section> elements much like we did the teaser <section> 
element on our home page. We’ll wrap each <section> element with a class of 
container in a <section> element with the class of row-alt. We’ll then change 
each <section> element with a class of container to a <div> element for better 
semantic alignment.

Each of our interior pages should now include the following:

1. <section class="row-alt">

2. <div class="container">

3.

4. <h1>...</h1>

5.

6. </div>

7. </section>



150 Learn to Code HTML & CSS

3. Because we are updating our interior pages, let’s make their introductions, or leads,  
a little more appealing. We’ll begin by adding a paragraph introducing each page just 
below the <h1> element in each <section> element with a class of row-alt. Our 
speakers.html page, for example, may now include the following lead section:

1. <section class="row-alt">

2. <div class="container">

3.

4. <h1>Speakers</h1>

5.

6. <p>We&#8217;re happy to welcome over twenty speakers to present 

    on the industry&#8217;s latest technologies. Prepare for an 

    inspiration extravaganza.</p>

7.

8. </div>

9. </section>

4. In addition to inserting the paragraph, let’s also change some of the styles within the 
lead section. To do this, we’ll add a class of lead to the <div> element that already 
has a class of container; this can be found nested directly inside the <section> 
element with a class of row-alt. Our lead section for each interior page will now 
look like this:

1. <section class="row-alt">

2. <div class="lead container">

3.

4. ...

5.

6. </div>

7. </section>

5. Once the lead class is in place, we’ll center all of the text within these <div> elements. 
We’ll also increase the font-size and line-height of any paragraphs within these 
<div> elements.

We’ll create a new section for leads within our main.css file, just below the typogra-
phy section, and add the following styles:

1. /*

2. ========================================

3. Leads

4. ========================================



Lesson 7 · Setting Backgrounds & Gradients  151

5. */

6.

7. .lead {

8. text-align: center;

9. }

10. .lead p {

11. font-size: 21px;

12. line-height: 33px;

13. }

The interior pages of our Styles Conference website have now received some long-
overdue love in the form of gradient background rows and leads (see Figure 7.10). 
Make sure to review the code for all of the interior pages to see their newly enhanced 
content, headings, and paragraphs.

Figure 7.10 The Speakers page of our Styles Conference website, complete with a gradient  
background row

The source code for the exercises within this lesson can be found at  
http://learn.shayhowe.com/html-css/setting-backgrounds-and-gradients/.

http://learn.shayhowe.com/html-css/setting-backgrounds-and-gradients/


152 Learn to Code HTML & CSS

Using Multiple Background Images
For the longest time, elements were allowed to have only one background image at a time, 
which created quite a few constraints when designing a page. Fortunately, with CSS3, 
we can now use more than one background image on an element by comma-separating 
multiple background values within a background or background-image property.

The background image value that comes first will be the foremost background image, and 
the background image that’s listed last will be the rearmost background image. Any value 
between the first and the last will reside within the middle ground accordingly. Here’s an 
example of the CSS for a <div> element that uses three background images:

1. div {

2. background:

  url("foreground.png") 0 0 no-repeat,

  url("middle-ground.png") 0 0 no-repeat,

  url("background.png") 0 0 no-repeat;

3. }

The preceding code uses a shorthand value for the background property, chaining multiple 
background image values together. These shorthand values may also be broken up into 
comma-separated values across the background-image, background-position, and 
background-repeat properties.

Multiple Background Images Example
Let’s go back to the success alert message once more to combine both the tick background 
image and the linear gradient background image.

In order to do so, we’ll include two values within the second background property. The 
first value, the foremost image, will be the tick image (see Figure 7.11). The second value, 
the rearmost image, will be the linear gradient. The two values are comma separated.

Figure 7.11 A success alert message with multiple background images including a tick image and a linear 
gradient



Lesson 7 · Setting Backgrounds & Gradients  153

HTML

1. <div class="alert-success">

2. Woo hoo! Congratulations, you did it!

3. </div>

CSS

1. .alert-success {

2. background: #67b11c;

3. background: url("tick.png") 20px 50% no-repeat, linear-

gradient(#72c41f, #5c9e19);

4. border: 2px solid #467813;

5. border-radius: 5px;

6. color: #fff;

7. font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;

8. padding: 15px 20px 15px 50px;

9. }

Exploring New Background Properties
Along with gradient backgrounds and multiple background images, CSS3 also introduced 
three new CSS properties: background-size, background-clip, and background-origin. 
The background-size property allows us to change the size of a background image, while 
the background-clip and background-origin properties allow us to control where  
a background image is cropped and where a background image is contained within the 
element (inside the border or inside the padding, for example).

CSS3 Background Size
The background-size property allows us to specify a size for a background image.  
The property accepts a few different values, including length and keyword values.

When using length values, we can specify a width and a height value by using two space-
separated values. The first value will set the width of the background image, while the 
second value will set the height of the background image. It’s important to note that  
percentage values are in relation to the element’s size, not the background image’s  
original size.



154 Learn to Code HTML & CSS

Consequently, setting a background-size property 
with a 100% width will make the background image 
occupy the full width of the element. If a second value 
isn’t identified after the width, the height value will be 
automatically set to preserve the aspect ratio of the 
background image.

The keyword value auto may be used as either the 
width or height value to preserve the aspect ratio of 
the background image. For example, if we want to set 
the height of the background image to be 75% of the 
height of the element while maintaining the image’s 
aspect ratio, we can use a background-size property 
value of auto 75% (see Figure 7.12).

1. div {

2. background: url("shay.jpg") 0 0 no-repeat;

3. background-size: auto 75%;

4. border: 1px dashed #949599;

5. height: 240px;

6. width: 200px;

7. }

Cover & Contain Keyword Values
In addition to length background-size property values, there are also cover and  
contain keyword values available to the background-size property.

The cover keyword value specifies that the background image will be resized to com-
pletely cover an element’s width and height. The background image’s original aspect ratio 
will be preserved, yet the image will stretch or shrink as necessary to cover the entire 
element. Often when using the cover keyword value, part of the background image is cut 
off in order for the image to occupy the full available space of the element.

The contain keyword value, on the other hand, specifies that the background image will be  
resized to reside entirely contained within an element’s width and height. In doing so the  
background image’s original aspect ratio will be preserved, but the image will stretch or  
shrink as necessary to remain within the width and height of the element. In contrast with 
the cover keyword value, the contain keyword value will always show the full background 
image; however, oftentimes it will not occupy the full available space of the element.

Figure 7.12 A background image  
occupying 75% of an element’s 
height with the image’s width  
automatically adjusted to preserve 
its original aspect ratio



Lesson 7 · Setting Backgrounds & Gradients 155

Both the cover and contain keyword values may result in slightly distorted background
images, particularly when the images are stretched beyond their original dimensions.
We’ll want to keep an eye out for this when using these values, to make sure the resulting
styles are satisfactory.

CSS3 Background Clip & Background Origin
The background-clip property specifies the surface area a background image will
cover, and the background-origin property specifies where the background-position

should originate. The introduction of these two new properties corresponds with the
introduction of three new keyword values: border-box (see Figure 7.13), padding-box
(see Figure 7.14), and content-box (see Figure 7.15). Each of these three values may be
used for the background-clip and background-origin properties.

1. div {

2. background: url("shay.jpg") 0 0 no-repeat;

3. background-clip: padding-box;

4. background-origin: border-box;

5. }

The background-clip property value is set to border-box by default, allowing a back-
ground image to extend into the same area as any border. Meanwhile, the background-

origin property value is set to padding-box by default, allowing the beginning of a
background image to extend into the padding of an element.

Figure 7.13 The border-box 
value extends the background 
into the border of an element

Figure 7.14 The padding-box 
value extends the background 
into the padding of an element, 
but the background is contained 
within any border

Figure 7.15 The content-box 
value contains the background 
within the border and padding 
of an element

border-box padding-box

content-box



156 Learn to Code HTML & CSS

We first discussed these keyword values when we covered the box-sizing property back 
in Lesson 4, “Opening the Box Model.” The values themselves haven’t changed in mean-
ing, but their functions do change with the use of the different background properties.

Summary
Adding backgrounds and gradients to our pages allows us to bring color to the forefront 
of our designs. These features also help to define how content is grouped and to improve 
the layout of our pages as a whole.

To review, this lesson covered the following:

• How to add background colors and images to elements

• CSS gradients, both linear and radial, and how to customize them

• How to apply multiple background images to a single element

• New CSS3 properties that allow us to change the size, surface area, and origin of 
background images

Adding background colors, gradients, and images brings forth quite a few possibilities to 
enhance the overall design of our websites. Soon we’ll discuss how to semantically add 
images (aside from background images) and other media to our pages. But before that, 
let’s take a look at how to semantically create lists.



Lesson 8

Creating Lists

Lists are a part of everyday life. To-do lists determine what to get  

done. Navigational routes provide turn-by-turn lists of directions. 

Recipes provide lists of ingredients and lists of instructions. With  

a list for nearly everything, it’s easy to understand why they are 

also popular online.

When we want to use a list on a website, HTML provides three  

different types to choose from: unordered, ordered, and descrip-

tion lists. Choosing which type of list to use—or whether to use a  

list at all—comes down to the content and the most semantically 

appropriate option for displaying that content.

In addition to the three different types of lists available within 

HTML, there are multiple ways to style these lists with CSS. 

For example, we can choose what type of marker to use on a 

list. The marker could be square, round, numeric, alphabetical, 

or perhaps nonexistent. Also, we can decide if a list should be 

displayed vertically or horizontally. All of these choices play 

significant roles in the styling of our web pages.



158 Learn to Code HTML & CSS

Unordered Lists
An unordered list is simply a list of related items whose order does not matter. Creating 
an unordered list in HTML is accomplished using the unordered list block-level element, 
<ul> (see Figure 8.1). Each item within an unordered list is individually marked up using 
the list item element, <li>.

By default, most browsers add a vertical margin and left padding to the <ul> element 
and precede each <li> element with a solid dot. This solid dot is called the list item 
marker, and it can be changed using CSS.

1. <ul>

2. <li>Orange</li>

3. <li>Green</li>

4. <li>Blue</li>

5. </ul>

Ordered Lists
The ordered list element, <ol>, works very much like the unordered list element; individual 
list items are created in the same manner (see Figure 8.2). The main difference between 
an ordered list and an unordered list is that with an ordered list, the order in which items 
are presented is important.

Because the order matters, instead of using a dot as the default list item marker, an ordered 
list uses numbers.

1. <ol>

2. <li>Head north on N Halsted St</li>

3. <li>Turn right on W Diversey Pkwy</li>

4. <li>Turn left on N Orchard St</li>

5. </ol>

Ordered lists also have unique attributes available to them including start and reversed.

Figure 8.2 An ordered list 
with three list items whose 
order does matter

Figure 8.1 An unordered list 
with three list items whose 
order doesn’t matter



Lesson 8 · Creating Lists  159

Start Attribute
The start attribute defines the number from which an ordered list should start (see 
Figure 8.3). By default, ordered lists start at 1. However, there may be cases where a  
list should start at 30 or another number. When we use the start attribute on the <ol> 
element, we can identify exactly which number an ordered list should begin counting from.

The start attribute accepts only integer values, even though ordered lists may use differ-
ent numbering systems, such as roman numerals.

1. <ol start="30">

2. <li>Head north on N Halsted St</li>

3. <li>Turn right on W Diversey Pkwy</li>

4. <li>Turn left on N Orchard St</li>

5. </ol>

Figure 8.3 An ordered list 
with three list items and a 
start attribute value of 30

Reversed Attribute
The reversed attribute, when used on the <ol> element, allows a list to appear in reverse 
order. An ordered list of five items numbered 1 to 5 may be reversed and ordered from  
5 to 1 (see Figure 8.4). 

The reversed attribute is a Boolean attribute, and as such it doesn’t accept any value. It is 
either true or false. False is the default value; the value becomes true when the attribute 
name reversed appears on the <ol> element.

1. <ol reversed>

2. <li>Head north on N Halsted St</li>

3. <li>Turn right on W Diversey Pkwy</li>

4. <li>Turn left on N Orchard St</li>

5. </ol>

Figure 8.4 An ordered list 
with three list items and the 
reversed attribute



160 Learn to Code HTML & CSS

Value Attribute
The value attribute may be used on an individual <li> element within an ordered list to 
change its value within the list. The number of any list item appearing below a list item 
with a value attribute will be recalculated accordingly.

As an example, if the second list item has a value attribute value of 9, the number on 
that list item marker will appear as if it is the ninth item (see Figure 8.5). All subsequent 
list items will be numbered upwards from 9.

1. <ol>

2. <li>Head north on N Halsted St</li>

3. <li value="9">Turn right on W Diversey Pkwy</li>

4. <li>Turn left on N Orchard St</li>

5. </ol>

Figure 8.5 An ordered list 
with three list items, in which 
the second list item has a 
value attribute value of 9

Description Lists
Another type of list seen online (but not as often as unordered or ordered lists) is the 
description list. Description lists are used to outline multiple terms and their descriptions, 
as in a glossary, for example.

Creating a description list in HTML is accomplished using the description list block-level 
element, <dl>. Instead of using a <li> element to mark up list items, the description list 
requires two block-level elements: the description term element, <dt>, and the descrip-
tion element, <dd>.

A description list may contain numerous terms and descriptions, one after the other (see 
Figure 8.6). Additionally, a description list may have multiple terms per description, as 
well as multiple descriptions per term. A single term may have multiple meanings and 
warrant multiple descriptions. Conversely, a single description may be suitable for mul-
tiple terms.



Lesson 8 · Creating Lists  161

When adding a description list, the <dt> element must come before the <dd> element. 
The definition term and the description that directly follows it correspond to one another; 
thus, the order of these elements is important.

By default, the <dl> element will include vertical margins, just like the <ul> and <ol>  
elements. Additionally, the <dd> element includes a left margin by default.

1. <dl>

2. <dt>study</dt>

3. <dd>The devotion of time and attention to acquiring knowledge 

  on an academic subject, especially by means of books</dd>

4. <dt>design</dt>

5. <dd>A plan or drawing produced to show the look and function or 

  workings of a building, garment, or other object before it is 

  built or made</dd>

6. <dd>Purpose, planning, or intention that exists or is thought to 

  exist behind an action, fact, or material object</dd>

7. <dt>business</dt>

8. <dt>work</dt>

9. <dd>A person's regular occupation, profession, or trade</dd>

10. </dl>

Figure 8.6 A description list with multiple terms and descriptions



162 Learn to Code HTML & CSS

Nesting Lists
One feature that makes lists extremely powerful is their ability to be nested. Every list 
may be placed within another list; they can be nested continually. But the potential to 
nest lists indefinitely doesn’t provide free rein to do so. Lists should still be reserved  
specifically for where they hold the most semantic value.

One trick with nesting lists is to know where to begin and end each list and list item. 
Speaking specifically about unordered and ordered lists, as that is where most nesting 
will occur, the only element that may reside directly within the <ul> and <ol> elements  
is the <li> element. To repeat, the only element we can place as a direct child of the 
<ul> and <ol> elements is the <li> element.

That said, once inside the <li> element, the standard set of elements may be added, 
including any <ul> or <ol> elements. 

To nest a list rather than closing a list item, begin a new list (see Figure 8.7). Once the 
nested list is complete and closed, close the wrapping list item and continue on with the 
original list.

1. <ol>

2. <li>Walk the dog</li>

3. <li>Fold laundry</li>

4. <li>

5. Go to the grocery and buy:

6. <ul>

7. <li>Milk</li>

8. <li>Bread</li>

9. <li>Cheese</li>

10. </ul>

11. </li>

12. <li>Mow the lawn</li>

13. <li>Make dinner</li>

14. </ol>

Because nesting lists can be a little tricky—and unwanted styles will appear if it’s done 
incorrectly—let’s quickly review. The <ul> and <ol> elements may contain only <li>  
elements. The <li> element may contain any normal element as desired; however, the 
<li> element has to be a direct child of either a <ul> or <ol> element.

Figure 8.7 An ordered list with a 
nested unordered list



Lesson 8 · Creating Lists  163

It’s also worth noting that as lists are nested inside of other lists, their list item markers will  
change according to how deeply the list is nested. In the previous example, the unordered 
list nested within the ordered list uses hollow circles instead of solid discs as the list 
item marker. This change happens because the unordered list is nested one level into the 
ordered list.

Fortunately we have control over how these list item markers appear at any level, which 
we’ll take a look at next.

List Item Styling
Unordered and ordered lists use list item markers by default. For unordered lists these 
are typically solid dots, while ordered lists typically use numbers. With CSS the style and 
position of these list item markers may be adjusted.

List Style Type Property
The list-style-type property is used to set the content of a list item marker (see 
Figure 8.8). The available values range from squares and decimal numbers all the way 
to Armenian numbering, and the style may be placed on either the <ul>, <ol>, or <li> 
elements within CSS.

Any list-style-type property value can be added to either unordered or ordered lists. 
With this in mind, it is possible to use a numeric list item marker on an unordered list and 
a nonnumeric marker on an ordered list.

HTML

1. <ul>

2. <li>Orange</li>

3. <li>Green</li>

4. <li>Blue</li>

5. </ul>

CSS

1. ul {

2. list-style-type: square;

3. }

Figure 8.8 An unordered list with 
a list-style-type property value 
of square



164 Learn to Code HTML & CSS

List Style Type Values

As previously mentioned, the list-style-type property comes with a handful of differ-
ent values. The following list outlines these values as well as their corresponding content.

LIST STYLE TYPE VALUE CONTENT

none No list item

disc A filled circle

circle A hollow circle

square A filled square

decimal Decimal numbers

decimal-leading-zero Decimal numbers padded by initial zeros

lower-roman Lowercase roman numerals

upper-roman Uppercase roman numerals

lower-greek Lowercase classical Greek

lower-alpha / lower-latin Lowercase ASCII letters

upper-alpha / upper-latin Uppercase ASCII letters

armenian Traditional Armenian numbering

georgian Traditional Georgian numbering

Using an Image as a List Item Marker
There may come a time when the default list-style-type property values are not 
enough, and we want to customize our own list item marker. Doing so is most commonly 
accomplished by placing a background image on each <li> element within a list (see 
Figure 8.9).

The process includes removing any default list-style-type property value and adding 
a background image and padding to the <li> element.

In detail, the list-style-type property value of none will remove existing list item 
markers. The background property will identify a background image, along with its posi-
tion and repeat value, if necessary. And the padding property will provide space to the 
left of the text for the background image.



Lesson 8 · Creating Lists  165

HTML

1. <ul>

2. <li>Orange</li>

3. <li>Green</li>

4. <li>Blue</li>

5. </ul>

CSS

1. li {

2. background: url("arrow.png") 0 50% no-repeat;

3. list-style-type: none;

4. padding-left: 12px;

5. }

List Style Position Property
By default the list item marker is to the left of the content within the <li> element. This 
list style positioning is described as outside, meaning all of the content will appear 
directly to the right, outside of the list item marker. Using the list-style-position 
property, we can change the default value of outside to inside or inherit.

The outside property value places the list item marker to the left of the <li> element 
and doesn’t allow any content to wrap below the list item marker. The inside property 
value (which is rarely seen or used) places the list item marker in line with the first line of 
the <li> element and allows other content to wrap below it as needed (see Figure 8.10).

HTML

1. <ul>

2. <li>Cupcakes...</li>

3. <li>Sprinkles...</li>

4. </ul>

CSS

1. ul {

2. list-style-position: inside;

3. }

Figure 8.9 An unordered list with a 
custom list item marker by way of  
a background image



166 Learn to Code HTML & CSS

Figure 8.10 An unordered list with a list-style-position property value of inside

Shorthand List Style Property
The list style properties discussed thus far, list-style-type and list-style-position, 
can be combined into one shorthand list-style property value. When using the list-
style property, we can use one or all list style property values at a time. The order of 
these shorthand values should be list-style-type followed by list-style-position.

1. ul {

2. list-style: circle inside;

3. }

4. ol {

5. list-style: lower-roman;

6. }

Horizontally Displaying List
Occasionally we may want to display lists horizontally rather than vertically. Perhaps we 
want to divide a list into multiple columns, to build a navigational list, or to put a few list 
items in a single row. Depending on the content and desired appearance, there are a few 
different ways to display lists as a single line, such as by making the display property 
value of <li> elements inline or inline-block or by floating them.

Displaying List
The quickest way to display a list on a single line is to give the <li> elements a display 
property value of inline or inline-block. Doing so places all the <li> elements within 
a single line, with a single space between each list item.

If the spaces between each of the <li> elements are troublesome, they may be removed 
using the same techniques we discussed in Lesson 5, “Positioning Content.”



Lesson 8 · Creating Lists  167

More often than not, we’ll use the inline-block property value rather than the inline 
property value. The inline-block property value allows us to easily add vertical margins 
and other spacing to the <li> elements, whereas the inline property value does not.

When changing the display property value to inline or inline-block, the list item 
marker, be it a bullet, number, or other style, is removed (see Figure 8.11).

HTML

1. <ul>

2. <li>Orange</li>

3. <li>Green</li>

4. <li>Blue</li>

5. </ul>

CSS

1. li {

2. display: inline-block;

3. margin: 0 10px;

4. }

Figure 8.11 An unordered list with each <li> element 
displayed with an inline-block property value

Floating List
Changing the display property value to inline or inline-block is quick; however, it 
removes the list item marker. If the list item marker is needed, floating each <li> element 
is a better option than changing the display property.

Setting all <li> elements’ float property to left will horizontally align all <li> elements 
directly next to each other without any space between them. When we float each <li> 
element, the list item marker is displayed by default and will actually sit on top of the 
<li> element next to it. To prevent the list item marker from being displayed on top of 
other <li> elements, a horizontal margin or padding should be added (see Figure 8.12).

HTML

1. <ul>

2. <li>Orange</li>

3. <li>Green</li>

4. <li>Blue</li>

5. </ul>

CSS

1. li {

2. float: left;

3. margin: 0 20px;

4. }

Figure 8.12 An unordered list with each <li>  
element floated to the left



168 Learn to Code HTML & CSS

As when floating any element, this breaks the flow of the page. We must remember to 
clear our floats—most commonly with the clearfix technique—and return the page back 
to its normal flow.

Navigational List Example
We’ll often develop, and find, navigation menus using unordered lists. These lists are 
commonly laid out as horizontal lists, using either of the two techniques previously men-
tioned. Here is an example of a horizontal navigation menu marked up using an unor-
dered list with <li> elements displayed as inline-block elements (see Figure 8.13).

Figure 8.13 A navigation menu marked up using an unordered list

HTML

1. <nav class="navigation">

2. <ul>

3. <li><a href="#">Profile</a></li><!--

4. --><li><a href="#">Settings</a></li><!--

5. --><li><a href="#">Notifications</a></li><!--

6. --><li><a href="#">Logout</a></li>

7. </ul>

8. </nav>

CSS

1. .navigation ul {

2. font: bold 11px "Helvetica Neue", Helvetica, Arial, sans-serif;

3. margin: 0;

4. padding: 0;

5. text-transform: uppercase;

6. }

7. .navigation li {

8. display: inline-block;

9. }

10. .navigation a {



Lesson 8 · Creating Lists  169

11. background: #395870;

12. background: linear-gradient(#49708f, #293f50);

13. border-right: 1px solid rgba(0, 0, 0, .3);

14. color: #fff;

15. padding: 12px 20px;

16. text-decoration: none;

17. }

18. .navigation a:hover {

19. background: #314b60;

20. box-shadow: inset 0 0 10px 1px rgba(0, 0, 0, .3);

21. }

22. .navigation li:first-child a {

23. border-radius: 4px 0 0 4px;

24. }

25. .navigation li:last-child a {

26. border-right: 0;

27. border-radius: 0 4px 4px 0;

28. }

In Practice
Now that we know how to build lists within HTML and CSS, let’s loop back to our Styles 
Conference website and see where we might be able to use lists.

1. Currently the navigation menus within the <header> and <footer> elements on  
our pages consist of a handful of anchor elements. These anchor elements could be 
better organized in an unordered list.

Using an unordered list (via the <ul> element) and list items (via the <li> element) 
will give structure to our navigation menus. These new elements, however, will dis-
play our navigation menus vertically.

We’re going to want to change the display value of our <li> elements to inline-
block to get all of them to align in a horizontal row. When we do that, though, we’ll 
also need to account for the blank space left between each <li> element. Thinking 
back to Lesson 5, “Positioning Content,” we know that opening an HTML comment at 
the end of a <li> element and closing an HTML comment at the beginning of a <li> 
element will remove this space.



170 Learn to Code HTML & CSS

Keeping this in mind, the markup for the navigation menu within our <header>  
element will now look like this:

1. <nav class="nav primary-nav">

2. <ul>

3. <li><a href="index.html">Home</a></li><!--

4. --><li><a href="speakers.html">Speakers</a></li><!--

5. --><li><a href="schedule.html">Schedule</a></li><!--

6. --><li><a href="venue.html">Venue</a></li><!--

7. --><li><a href="register.html">Register</a></li>

8. </ul>

9. </nav>

Along these same lines, the markup for the navigation menu within our <footer> 
element will now look like this:

1. <nav class="nav">

2. <ul>

3. <li><a href="index.html">Home</a></li><!--

4. --><li><a href="speakers.html">Speakers</a></li><!--

5. --><li><a href="schedule.html">Schedule</a></li><!--

6. --><li><a href="venue.html">Venue</a></li><!--

7. --><li><a href="register.html">Register</a></li>

8. </ul>

9. </nav>

Let’s not forget to make these changes in all of our HTML files.

2. With the unordered list in place, let’s make sure the list items align horizontally,  
and let’s clean up their styles a bit. We’ll use the existing nav class to help target our 
new styles.

We’ll begin by setting all of the <li> elements within any element with the class 
attribute value of nav to be displayed inline-block, to include some horizontal 
margins, and to be vertically aligned to the top of the element.

Additionally, we’ll use the :last-child pseudo-class selector to identify the last 
<li> element and reset its right margin to 0. Doing so ensures that any horizontal 
space between the <li> element and the edge of its parent element is removed.



Lesson 8 · Creating Lists  171

Within our main.css file, below our existing navigation styles, let’s add the follow-
ing CSS:

1. .nav li {

2. display: inline-block;

3. margin: 0 10px;

4. vertical-align: top;

5. }

6. .nav li:last-child {

7. margin-right: 0;

8. }

You may be wondering why our unordered list didn’t include any list item markers or 
default styles. These styles were removed by the reset at the top of our style sheet. If 
we look at the reset, we’ll see our <ol>, <ul>, and <li> elements all include a margin  
and padding of 0, and our <ol> and <ul> elements have a list-style value of none.

3. Our navigation menus aren’t the only places we’ll be using lists. We’ll also use them 
on some of our internal pages, including the Speakers page. Let’s add some speakers 
to our conference.

Within our speakers.html file just below our lead section, let’s create a new sec-
tion where we’ll present all of our speakers. Reusing some existing styles, we’ll use 
a <section> element with a class attribute value of row to wrap all of our speakers 
and apply a white background and padding behind them. Inside the <section> ele-
ment, we’ll add a <div> element with a class attribute value of grid to center our 
speakers on the page and allow us to use multiple columns in doing so.

So far our HTML below the lead section looks like this:

1. <section class="row">

2. <div class="grid">

3.

4. </div>

5. </section>

4. Inside the grid every speaker will be marked up with his or her own <section> ele-
ment, which will include two columns. The first column will span two-thirds of the 
<section> element and will be marked up using a <div> element. The second column 
will span the remaining one-third of the <section> element and will be marked up 
using an <aside> element, as its content is secondary to the speaker and his or her 
specific talk.



172 Learn to Code HTML & CSS

Using our existing col-2-3 and col-1-3 classes, the outline for a speaker section 
will look like this:

1. <section id="shay-howe">

2.

3. <div class="col-2-3">

4. ...

5. </div><!--

6.

7. --><aside class="col-1-3">

8. ...

9. </aside>

10.

11. </section>

There are a few items to notice here. First, each <section> element for each speaker 
includes an ID attribute with the speaker’s name as the attribute value. Later, when 
we create the schedule for our conference, these ID attributes will serve as anchors, 
allowing us to link from the schedule to a speaker’s profile.

Additionally, the closing tag of the <div> element is followed by the opening of an 
HTML comment, and the opening tag of the <aside> element is preceded by the 
closing of an HTML comment. Because the column-based classes will display these 
elements as inline-block elements, we are removing the blank space that will 
appear between them.

5. Inside the two-thirds column, marked up with the <div> element, we’ll use a few 
headings and paragraphs to show the speaker’s name, the title and abstract of the 
talk, and a short biography.

Including this content, a speaker section will look like this:

1. <section id="shay-howe">

2.

3. <div class="col-2-3">

4.

5. <h2>Shay Howe</h2>

6. <h5>Less Is More: How Constraints Cultivate Growth</h5>

7.

8. <p>By setting constraints, we force ourselves...</p>

9.

10. <h5>About Shay</h5>

11.



Lesson 8 · Creating Lists  173

12. <p>As a designer and front-end developer, Shay...</p>

13.

14. </div><!--

15.

16. --><aside class="col-1-3">

17. ...

18. </aside>

19.

20. </section>

6. Within the one-third column, marked up with an <aside> element, we’re going to 
add a <div> element with a class attribute value of speaker-info. We’ll use a <div> 
element because we’ll be adding styles to this element soon. 

Before getting into any styles, though, let’s add an unordered list within the <div> 
element that includes as list items some relevant links for the speaker.

Now our HTML for a speaker will look like this:

1. <section id="shay-howe">

2.

3. <div class="col-2-3">

4.

5. <h2>Shay Howe</h2>

6. <h5>Less Is More: How Constraints Cultivate Growth</h5>

7.

8. <p>By setting constraints, we force ourselves...</p>

9.

10. <h5>About Shay</h5>

11.

12. <p>As a designer and front-end developer, Shay...</p>

13.

14. </div><!--

15.

16. --><aside class="col-1-3">

17. <div class="speaker-info">

18.

19. <ul>

20. <li><a href=

"https://twitter.com/shayhowe">@shayhowe</a></li>

continues



174 Learn to Code HTML & CSS

21. <li><a href=

"http://learn.shayhowe.com/">learn.shayhowe.com</a></li>

22. </ul>

23.

24. </div>

25. </aside>

26.

27. </section>

7. With the <div> element with a class attribute value of speaker-info ready, we can 
add some styles to it. 

We’ll begin by adding a new section within our main.css file for the Speaker page 
styles. From there, let’s add a 1-pixel solid gray border with a 5-pixel radius around 
any element that includes the class attribute value of speaker-info.

Next, let’s add a top margin of 88 pixels to position the element on the same vertical 
line as the first paragraph of the talk description, and let’s also add 22 pixels of verti-
cal padding inside the element to provide room for the nested unordered list.

Lastly, let’s center all of the text within the element.

In all, our CSS for the speaker-info class rule set looks like this:

1. /*

2. ========================================

3. Speakers

4. ========================================

5. */

6.

7. .speaker-info {

8. border: 1px solid #dfe2e5;

9. border-radius: 5px;

10. margin-top: 88px;

11. padding: 22px 0;

12. text-align: center;

13. }

Let’s take a minute to review why we’re using a <div> element here and the corre-
sponding styles.

We’re placing a <div> element inside the <aside> element with the class attribute 
value of col-1-3 because we’ll want the padding inherited from the col-1-3 class 



Lesson 8 · Creating Lists  175

to be outside of the border on the <div> element. Before long we’ll be including an 
image within the <div> element, alongside the unordered list; therefore we created  
a <div> element as opposed to applying these styles directly to the <ul> element.

8. As we add more and more speakers to the page, we’ll want to ensure that they 
remain an equal distance apart vertically. To do so, we’ll create a speaker class rule 
set which includes a bottom margin of 44 pixels, like this:

1. .speaker {

2. margin-bottom: 44px;

3. }

We can then apply this class to the <section> element for each speaker, provided 
it isn’t the last speaker. We’ll omit this class on the last speaker, as we don’t want to 
create any unnecessary margins before our <footer> element. With more than one 
speaker, our layout will look like this:

1. <section class="row">

2. <div class="grid">

3.

4. <section class="speaker" id="chris-mills">

5.

6. <div class="col-2-3">

7. ...

8. </div><!--

9.

10. --><aside class="col-1-3">

11. ...

12. </aside>

13.

14. </section>

15.

16. <section id="shay-howe">

17.

18. <div class="col-2-3">

19. ...

20. </div><!--

21.

22. --><aside class="col-1-3">

23. ...

continues



176 Learn to Code HTML & CSS

24. </aside>

25.

26. </section>

27.

28. </div>

29. </section>

Notice how the first speaker <section> element, for Chris Mills, includes the class 
attribute value of speaker, which vertically separates it from the speaker <section> 
element for myself, Shay Howe. The last speaker <section> element, again for 
myself, doesn’t include a class attribute value of speaker in order to keep it a proper 
distance from the <footer> element.

Our navigation menus are now complete, and the Speakers page is taking shape  
(see Figure 8.14).

The source code for the exercises within this lesson can be found at  
http://learn.shayhowe.com/html-css/creating-lists.

Summary
Lists are used quite commonly in HTML, often in places that might not be obvious or 
apparent. The key is to use them as semantically as possible and to leverage them where 
they best fit.

Let’s recap. Within this lesson we covered the following:

• How to create unordered, ordered, and description lists

• How to properly nest lists inside of other lists

• How to change the list item marker style and position

• How to use a background image instead of a list item marker

• How to horizontally display or float lists

Now that we know how to add lists to our pages, let’s add media to our pages, too. In the 
next chapter we’ll dive into embeddable media such as images, audio, and video.

http://learn.shayhowe.com/html-css/creating-lists


Lesson 8 · Creating Lists  177

Figure 8.14 Our Speakers page after updating our navigation menus and adding speakers



Lesson 9

Adding Media

We browse the Internet in search of interesting and informa-

tive content, which we usually find in the form of plain text.  

To accompany this plain text, HTML provides ways to embed 

rich media in the form of images, audio tracks, and videos, as 

well as to embed content from another web page in the form  

of an inline frame.

The ability to include images, audio tracks, videos, and inline 

frames within websites has been around for some time. Browser 

support for images and inline frames has generally been pretty 

good. And while the ability to add audio tracks and videos to a 

website has been around for years, the process has been fairly 

cumbersome. Fortunately, this process has improved and is much 

easier with support directly from HTML.

Today, we can freely use images, audio, video, and inline frames 

knowing that this content is supported across all major browsers.



Lesson 9 · Adding Media  179

Adding Images
To add images to a page, we use the <img> inline element. The <img> element is a self-
containing, or empty, element, which means that it doesn’t wrap any other content and it 
exists as a single tag. For the <img> element to work, a src attribute and value must be 
included to specify the source of the image (see Figure 9.1). The src attribute value is a 
URL, typically relative to the server where a website is hosted.

In conjunction with the src attribute, the alt (alternative text) attribute, which describes 
the contents of an image, should be applied. The alt attribute value is picked up by search 
engines and assistive technologies to help convey the purpose of an image. The alt text 
will be displayed in place of the image if for some reason the image is not available (see 
Figure 9.2).

1. <img src="dog.jpg" alt="A black, brown, and white dog wearing a kerchief">

Figure 9.1 An image embedded within HTML

Figure 9.2 The alternate text, “A black, brown, and white dog  
wearing a kerchief,” shown in place of a missing image



180 Learn to Code HTML & CSS

Supported Image Formats

Images come in a variety of different file formats, and each browser may support (or not 
support) different formats. By and large, the most commonly supported formats online 
are gif, jpg, and png images. Of these, the most widely used formats today are jpg and 
png. The jpg format provides quality images with high color counts while maintaining a 
decent file size, ideal for faster load times. The png format is great for images with trans-
parencies or low color counts. We most commonly see jpg images used for photographs 
and png images used for icons or background patterns.

Sizing Images
It is important to identify the size of an image in order to tell the browser how large the 
image should be before the page even loads; thus the browser can reserve space for the 
image and render the page faster. There are a few different ways to size images so that 
they work well on a page. One option is to use the width and height attributes directly 
within the <img> tag in HTML.

Additionally, images may be sized using the width and height properties in CSS. When 
both the HTML attributes and CSS properties are used, the CSS attributes will take pre-
cedence over the HTML attributes.

Specifying either a width or height will 
cause the other dimension to adjust auto-
matically to maintain the aspect ratio of the 
image. As an example, if we want an image 
to be 200 pixels tall but are less specifically 
concerned about how wide it is, we can set 
the height to 200 pixels, and the width of 
the image will adjust accordingly. Setting 
both a width and height will work also; 
however, doing so may break the aspect 
ratio of an image, causing it to appear dis-
torted (see Figure 9.3).

1. img {

2. height: 200px;

3. width: 200px;

4. }

Figure 9.3 An image with defined width and 
height that cause it to be distorted



Lesson 9 · Adding Media  181

While using the width and height attributes directly in HTML provides some semantic 
value by noting an image’s original size, it can be difficult to manage numerous images 
that all need to be the same size. In this event, it’s common practice to use CSS to resize 
the images.

Positioning Images
We can use a number of different approaches to position images on a web page. By default 
images are positioned as inline-level elements; however, their positions may be changed 
using CSS, specifically the float, display, and box model properties, including padding, 
border, and margin.

Inline Positioning Images

The <img> element is by default an inline-level element. Adding an image without any 
styles to a page will position that image within the same line as the content that surrounds 
it (see Figure 9.4). Additionally, the height of the line in which an image appears will be 
changed to match the height of the image, which can create large vertical gaps within 
that line.

1. <p>Gatsby is a black, brown, and white hound mix puppy who loves

howling at fire trucks and collecting belly rubs. <img src=

"dog.jpg" alt="A black, brown, and white dog wearing a kerchief">

Although he spends most of his time sleeping he is also quick to

chase any birds who enter his vision.</p>

Figure 9.4 An image displayed inline within a paragraph

Leaving images untouched in their default positioning isn’t too common. More often than 
not, images are displayed as block-level elements or are floated flush to one side.



182 Learn to Code HTML & CSS

Block Positioning Images

Adding the display property to an image and setting its value to block forces the image 
to be a block-level element (see Figure 9.5). This makes the image appear on its own line, 
allowing the surrounding content to be positioned above and below the image.

1. img {

2. display: block;

3. }

Figure 9.5 An image displayed as a block within a paragraph

Positioning Images Flush Left or Right

Sometimes displaying an image as inline or block, or perhaps even inline-block, isn’t 
ideal. We may want the image to appear on the left or right side of its containing element, 
while all of the other content wraps around the image as necessary. To do this, we use 
the float property with a value of either left or right.

Remembering back to Lesson 5, “Positioning Content,” we recall that the float property 
was originally intended to position images to the left or right of a containing element. 
Now we’ll use it for that original purpose.

Floating an image is a start; however, all other content will align directly against it.  
To provide spacing around an image, we’ll use the margin property (see Figure 9.6).  
Additionally, we can use the padding, border, and background properties to build a frame 
for the image, if desired.

1. img {

2. background: #e8eae9;

3. border: 1px solid #c6c9cc;

4. float: right;



Lesson 9 · Adding Media  183

5. margin: 8px 0 0 20px;

6. padding: 4px;

7. }

Figure 9.6 An image styled to appear within a frame and floated to the right of its containing element

When to Use an Image Element vs. a Background Image

There are two primary ways to add images to a web page. One way, as covered here, 
is to use the <img> element within HTML. Another way is to use the background or 
background-image property within CSS to assign a background image to an element. 
Either option will do the job; however, they each have specific use cases.

The <img> element within HTML is the preferred option when the image being used holds 
semantic value and its content is relevant to the content of the page.

The background or background-image property within CSS is the preferred option when 
the image being used is part of the design or user interface of the page. As such, it’s not 
directly relevant to the content of the page.

The <img> element is quite popular, and when it was originally added to the HTML speci-
fication it forever changed the way websites were built.

In Practice
Now that we know how to add and position images on a page, let’s take a look at our 
Styles Conference website and see where we can add a few images.

1. Let’s begin by adding some images to our home page. Specifically, we’ll add an image 
within each of the teaser sections promoting a few of our pages.



184 Learn to Code HTML & CSS

Before we jump into the code, though, let’s create a new folder named “images” 
within our “assets” folder. Then, within the “images” folder, let’s create another folder 
named “home” specifically for our home page images. Within the “home” folder we’ll 
add three images: speakers.jpg, schedule.jpg, and venue.jpg. (For reference, 
these images may be found on http://learn.shayhowe.com/html-css/adding-media.)

Then, inside our index.html file, each teaser section has an <a> element wrapping 
both an <h3> and an <h5> element. Let’s move the <h5> element above the <a> ele-
ment and replace it with an <img> element. The src attribute value for each <img> 
element will correspond to the folder structure and filename we set up, and the alt 
attribute value will describe the contents of each image.

The HTML for our first teaser, for the Speakers page, will look like this:

1. <section class="teaser col-1-3">

2. <h5>Speakers</h5>

3. <a href="speakers.html">

4. <img src="assets/images/home/speakers.jpg" alt="Professional

Speaker">

5. <h3>World-Class Speakers</h3>

6. </a>

7. <p>Joining us from all around the world are over twenty fantastic

  speakers, here to share their stories.</p>

8. </section>

Let’s continue this pattern for both the Schedule and Venue page teasers, too.

2. Now that we’ve added a few images to our home page, we’ll need to clean up their 
styles a bit and make sure they properly fit into the layout of our page.

Since images are inline-level elements by default, let’s change our images within 
the teaser sections to block-level elements. Let’s also set their maximum width to 
100% to ensure they don’t exceed the width of their respective columns. Changing 
this width value is important as it allows our images to adjust with the width of the 
columns as necessary.

Lastly, let’s round the corners of the images slightly and apply 22 pixels of bottom 
margin to the images, providing a little breathing room.

Once we add these new styles to our existing home page styles (using the teaser 
class as a qualifying selector for the <img> elements), our CSS will look like this:

1. .teaser img {

2. border-radius: 5px;

http://learn.shayhowe.com/html-css/adding-media


Lesson 9 · Adding Media  185

3. display: block;

4. margin-bottom: 22px;

5. max-width: 100%

6. }

3. Next up, let’s add images of all of the speakers to the Speakers page. We’ll begin by 
creating a “speakers” folder within our “images” folder and placing images of all of 
the speakers there.

Within the speakers.html file, let’s add an <img> element within each of the speaker 
information <aside> elements. Let’s place each <img> element inside the <div> ele-
ment with the class attribute value of speaker-info, just above the <ul> element.

The src attribute value of each image will correspond to the “speakers” folder we set 
up and the speaker’s name; the alt attribute value will be the speaker’s name.

The <aside> element for myself, as a speaker, will look like this:

1. <aside class="col-1-3">

2. <div class="speaker-info">

3.

4. <img src="assets/images/speakers/shay-howe.jpg"

alt="Shay Howe">

5.

6. <ul>

7. <li><a href="https://twitter.com/shayhowe">@shayhowe</a></li>

8. <li><a href="http://learn.shayhowe.com/">

      learn.shayhowe.com</a></li>

9. </ul>

10.

11. </div>

12. </aside>

This same pattern for adding an image should then be applied to all other speakers.

4. As we did with the images on our home page, we’ll want to apply some styles to the 
images on the Speakers page.

Let’s begin by applying the border-radius property with a value of 50%, turning our 
images into circles. From there, let’s set a fixed height of 130 pixels to each image 
and set them to be vertically aligned to the top of the line they reside within.

With the height and vertical alignment in place, let’s apply vertical margins to the 
images. Using a negative 66-pixel margin on the top of the images, we’ll pull them 



186 Learn to Code HTML & CSS

slightly out of the <aside> element and make them vertically centered with the top 
border of the <div> element with a class attribute value of speaker-info. Then, 
applying a 22-pixel margin on the bottom of the image provides space between the 
image and the <ul> element below it.

When we add these new styles to our existing Speakers page styles (using the 
speaker-info class as a qualifying selector for the <img> elements), our CSS will 
look like this:

1. .speaker-info img {

2. border-radius: 50%;

3. height: 130px;

4. margin: -66px 0 22px 0;

5. vertical-align: top;

6. }

5. Since we are using an aggressive negative margin on the <img> element within the 
<div> element with a class attribute value of speaker-info, we need to remove 
the padding on the top of that <div> element.

Previously we were using the padding property with a value of 22px 0, thus placing 
22 pixels of padding on the top and bottom and 0 pixels of padding on the left and 
right of the <div> element. Let’s swap this property and value out for the padding-
bottom property, as that’s the only padding we need to identify, and use a value of 
22 pixels.

The new speaker-info class rule set looks like this:

1. .speaker-info {

2. border: 1px solid #dfe2e5;

3. border-radius: 5px;

4. margin-top: 88px;

5. padding-bottom: 22px;

6. text-align: center;

7. }

Now both our home and Speaker pages are looking pretty sharp, as shown in  
Figures 9.7 and 9.8, respectively.



Lesson 9 · Adding Media  187

Figure 9.7 Our Styles Conference home page after adding images to each section that teases  
another page



188 Learn to Code HTML & CSS

Figure 9.8 Our Styles Conference Speakers page after adding images for each of the speakers



Lesson 9 · Adding Media  189

Adding Audio
HTML5 provides a quick and easy way to add audio files to a website by way of the <audio> 
element. As with the <img> element, the <audio> element accepts a source URL speci-
fied by the src attribute. Unlike the <img> element, though, the <audio> element requires 
both opening and closing tags, which we’ll discuss soon.

1. <audio src="jazz.ogg"></audio>

Audio Attributes
Several other attributes may accompany the src attribute on the <audio> element; the 
most popular include autoplay, controls, loop, and preload.

The autoplay, controls, and loop attributes are all Boolean attributes. As Boolean attri-
butes, they don’t require a stated value. Instead, when each is present on the <audio> 
element its value will be set to true, and the <audio> element will behave accordingly.

By default, the <audio> element isn’t displayed on a page. If the autoplay Boolean attri-
bute is present on the <audio> element, nothing will appear on the page, but the audio 
file will automatically play upon loading.

1. <audio src="jazz.ogg" autoplay></audio>

To display the <audio> element on a page, the controls Boolean attribute is necessary. 
When it’s applied to the <audio> element, the controls Boolean attribute will display 
a browser’s default audio controls, including play and pause, seek, and volume controls 
(see Figure 9.9).

1. <audio src="jazz.ogg" controls></audio>

Figure 9.9 An audio clip with the default Google Chrome browser controls

When present on the <audio> element, the loop Boolean attribute will cause an audio 
file to repeat continually, from beginning to end.

Lastly, the preload attribute for the <audio> element helps identify what, if any, information 
about the audio file should be loaded before the clip is played. It accepts three values: 
none, auto, and metadata. The none value won’t preload any information about an audio 



190 Learn to Code HTML & CSS

file, while the auto value will preload all information about an audio file. The metadata 
value sits in between the none and auto values, as it will preload any available metadata 
information about an audio file, such as the clip’s length, but not all information.

When the preload attribute isn’t present on the <audio> element, all information about 
an audio file is loaded, as if the value was set to auto. For this reason, using the preload 
attribute with a value of metadata or none is a good idea when an audio file is not essen-
tial to a page. It’ll help to conserve bandwidth and allow pages to load faster.

Audio Fallbacks & Multiple Sources
At the moment, different browsers support different audio file formats, the three most 
popular of which are ogg, mp3, and wav. For the best browser support we’ll need to use a 
handful of audio fallbacks, which will be included inside an <audio> element’s opening 
and closing tags.

To begin, we’ll remove the src attribute from the <audio> element. Instead, we’ll use the 
<source> element, with a src attribute, nested inside the <audio> element to define a 
new source.

Using a <source> element and src attribute for each file format, we can list one audio 
file format after the other. We’ll use the type attribute to quickly help the browser iden-
tify which audio types are available. When a browser recognizes an audio file format it 
will load that file and ignore all the others.

Because it was introduced in HTML5, some browsers may not support the <audio> ele-
ment. In this case, we can provide a link to download the audio file after any <source> 
elements within the <audio> element (see Figure 9.10).

1. <audio controls>

2. <source src="jazz.ogg" type="audio/ogg">

3. <source src="jazz.mp3" type="audio/mpeg">

4. <source src="jazz.wav" type="audio/wav">

5. Please <a href="jazz.mp3" download>download</a> the audio file.

6. </audio>

Figure 9.10 An anchor text audio fallback 
for when a browser doesn’t support the 
<audio> element



Lesson 9 · Adding Media  191

To review the previous code, the <audio> element includes the controls Boolean attri-
bute to ensure the audio player is displayed within browsers that support the element. 
The <audio> element does not include a src attribute and instead wraps three different 
<source> elements. Each <source> element includes a src attribute that references a 
different audio file format and a type attribute to identify the format of the audio file. As 
a last fallback, if a browser doesn’t recognize any of the audio file formats, the anchor link 
to download the element will be displayed.

In addition to the <audio> element, HTML5 also introduced the <video> element, which 
shares quite a few similarities with the <audio> element.

Adding Video
Adding video in HTML5 is very similar to adding audio. We use the <video> element 
in place of the <audio> element. All of the same attributes (src, autoplay, controls, 
loop, and preload) and fallbacks apply here, too.

With the <audio> element, if the controls Boolean attribute isn’t specified the audio 
clip isn’t displayed. With videos, if the controls Boolean attribute is not specified the 
video will display. However, it is fairly difficult to view unless the autoplay Boolean 
attribute is also applied. In general, the best practice here is to include the controls 
Boolean attribute unless there is a good reason not to allow users to start, stop, or replay 
the video.

Figure 9.11 A video clip 
with the default Google 
Chrome browser controls



192 Learn to Code HTML & CSS

Since videos take up space on the page, it doesn’t hurt to specify their dimensions, which 
is most commonly done with width and height properties in CSS. This helps ensure 
that the video isn’t too large and stays within the implied layout of a page. Additionally, 
specifying a size, as with images, helps the browser render videos faster and allows it to 
allocate the proper space needed for the video to be displayed.

1. <video src="earth.ogv" controls></video>

Customizing Audio & Video Controls

By default, the <audio> and <video> element controls are determined by each browser 
independently. Depending on the design of a website, more authority over the look and 
feel of the media player may be needed. If this is the case, a customized player can be 
built, but it will require a little JavaScript to work.

Poster Attribute
One additional attribute available for the <video> element is the poster attribute. The 
poster attribute allows us to specify an image, in the form of a URL, to be shown before 
a video is played. The example below uses a screen capture from the video as the poster 
for the Earth video.

1. <video src="earth.ogv" controls poster="earth-video-screenshot.jpg"></video>

Figure 9.12 A video clip 
showing a poster image 
before it is played



Lesson 9 · Adding Media  193

Video Fallbacks
As with the <audio> element, video fallbacks are also necessary. The same markup 
format, with multiple <source> elements for each file type and a plain text fallback, also 
applies within the <video> element.

1. <video controls>

2. <source src="earth.ogv" type="video/ogg">

3. <source src="earth.mp4" type="video/mp4">

4. Please <a href="earth.mp4" download>download</a> the video.

5. </video>

One additional fallback option that could be used in place of a plain text fallback is to use 
a YouTube or Vimeo embedded video. These video hosting websites allow us to upload 
our videos, provide a standard video player, and enable us to embed our videos onto a 
page using an inline frame.

HTML5 Audio & Video File Formats

Browser support for the <audio> and <video> elements varies, as do the file formats 
required with these elements. Each browser has its own preferred audio and video file 
formats.

There are a few tools that help to convert an audio or video file into different formats, 
and a quick search will provide an abundance of options.

Adding Inline Frames
Another way to add content to a page is to embed another HTML page within the current 
page. This is done using an inline frame, or <iframe> element. The <iframe> element 
accepts the URL of another HTML page within the src attribute value; this causes the 
content from the embedded HTML page to be displayed on the current page. The value 
of the src attribute may be a URL relative to the page the <iframe> element appears on 
or an absolute URL for an entirely external page.

Many pages use the <iframe> element to embed media onto a page from an external 
website such as Google Maps, YouTube, and others.

1. <iframe src="https://www.google.com/maps/embed?..."></iframe>



194 Learn to Code HTML & CSS

Figure 9.13 A page with an 
embedded HTML page that 
shows a map referenced  
from Google Maps

The <iframe> element has a few default styles, including an inset border and a width 
and height. These styles can be adjusted using the frameborder, width, and height 
HTML attributes or by using the border, width, and height CSS properties.

Seamless Inline Frames
Pages referenced within the src attribute of an <iframe> element play by their own 
rules, as they do not inherit any styles or behaviors from the page they are referenced 
on. Any styles applied to a page that includes an <iframe> element will not be inherited 
by the page referenced within the <iframe> element. Additionally, links within the page 
referenced within the <iframe> element will open inside that frame, leaving the page 
that contains the <iframe> element unchanged.

There will be times when we’ll want to change these behaviors, and the seamless Boolean 
attribute will allow us to do just that. When present on the <iframe> element, the  
seamless Boolean attribute allows styles from the page that includes an <iframe> ele-
ment to be inherited by the page referenced within the <iframe> element. Addition-
ally, the seamless Boolean attribute allows links clicked on a page referenced within 
an <iframe> element to be opened within the same window as the original page that 
includes the <iframe> element.

1. <iframe src="contact.html" seamless></iframe>



Lesson 9 · Adding Media  195

The seamless Boolean attribute is a new attribute introduced in HTML5. Although the 
browser support for this attribute is growing, it will not work within older browsers. It’s 
advisable to test the seamless Boolean attribute before using it.

In Practice
Inline frames provide a great way to add dynamic content to a page. Let’s give this a shot 
by updating our Venue page with some maps.

1. Before adding any maps or inline frames, let’s first prepare our Venue page for a two-
column grid. Below the leading section of the page we’ll add a <section> element 
with the class attribute value of row to identify a new section of the page, and we’ll 
include some general styles, such as a white background and some vertical padding.

Directly inside this <section> element let’s add a <div> element with the class 
attribute value of grid. The class of grid centers our content on the page and pre-
pares for the one-third and two-thirds columns to follow.

So far the main section of our venue.html file looks like this:

1. <section class="row">

2. <div class="grid">

3. ...

4. </div>

5. </section>

2. Within the <div> element with the class attribute value of grid we’ll have two new 
sections, one for the conference venue and one for the conference hotel. Let’s add 
two new <section> elements and give each of these <section> elements a unique 
class that corresponds to its content. We’ll use these classes to add margins to the 
bottom of each section.

Our HTML should now look like this:

1. <section class="row">

2. <div class="grid">

3.

4. <section class="venue-theatre">

5. ...

6. </section>

7.

continues



196 Learn to Code HTML & CSS

8. <section class="venue-hotel">

9. ...

10. </section>

11.

12. </div>

13. </section>

3. Now that we have a few classes to work with, let’s create a new section within our 
main.css file for Venue page styles. We’ll add a 66-pixel margin to the bottom of 
the <section> element with the class attribute value of venue-theatre to insert 
some space between it and the <section> element below it.

Then, we’ll add a 22-pixel margin to the bottom of the <section> element with the 
class attribute value of venue-hotel to provide some space between it and the 
<footer> element below it.

The new venue section within the main.css file looks like the following:

1. /*

2. ========================================

3. Venue

4. ========================================

5. */

6.

7. .venue-theatre {

8. margin-bottom: 66px;

9. }

10. .venue-hotel {

11. margin-bottom: 22px;

12. }

The <section> element with the class attribute value of venue-hotel has a smaller 
bottom margin than the <section> element with the class attribute value of 
venue-theatre because it sits next to the padding from the bottom of the <section> 
element with the class attribute of row. Adding that margin and padding together 
gives us the same value as the bottom margin on the <section> element with the 
class attribute value of venue-theatre.



Lesson 9 · Adding Media  197

4. Now it’s time to create the two columns within each of the new <section> elements. 
We’ll start by adding a <div> element with a class attribute value of col-1-3 to 
establish a one-third column. After it we’ll add an <iframe> element with a class 
attribute value of col-2-3 to establish a two-thirds column.

Keeping in mind that the column classes make both the <div> and <iframe> ele-
ments inline-block elements, we need to remove the empty space that will appear 
between them. To do so we’ll open an HTML comment directly after the closing 
<div> tag, and we’ll close the HTML comment immediately before the opening 
<iframe> tag.

In all, our HTML for the columns looks like this:

1. <section class="row">

2. <div class="grid">

3.

4. <section class="venue-theatre">

5.

6. <div class="col-1-3"></div><!--

7.

8. --><iframe class="col-2-3"></iframe>

9.

10. </section>

11.

12. <section class="venue-hotel">

13.

14. <div class="col-1-3"></div><!--

15.

16. --><iframe class="col-2-3"></iframe>

17.

18. </section>

19.

20. </div>

21. </section>

5. Within each of the <div> elements with a class attribute value of col-1-3 let’s add 
the venue’s name within an <h2> element, followed by two <p> elements. In the first 
<p> element let’s include the venue’s address, and in the second <p> element let’s 
include the venue’s website (within an anchor link) and phone number.



198 Learn to Code HTML & CSS

Within each of the paragraphs, let’s use the line-break element, <br>, to place breaks 
within the address and in between the website and phone number.

For the <section> element with the class attribute value of venue-theatre, the 
HTML looks like this:

1. <section class="venue-theatre">

2.

3. <div class="col-1-3">

4. <h2>Chicago Theatre</h2>

5. <p>175 N State St <br> Chicago, IL 60601</p>

6. <p><a href="http://www.thechicagotheatre.com/">

thechicagotheatre.com</a> <br> (312) 462-6300</p>

7. </div><!--

8.

9. --><iframe class="col-2-3"></iframe>

10.

11. </section>

The same pattern shown here for the theatre should also be applied to the hotel 
(using, of course, the proper address, website, and phone number).

6. We can search for these addresses in Google Maps (google.com/maps/). Once we 
locate an address and create a customized map, we have the ability to embed that 
map into our page. Following the instructions on Google Maps for how to share and 
embed a map will provide us with the HTML for an <iframe> element.

Let’s copy the HTML—<iframe> element, src attribute, and all—onto our page 
where our existing <iframe> element resides. We’ll do this for each location, using 
two different <iframe> elements.

In copying over the <iframe> element from Google Maps we need to make sure 
we preserve the class attribute and value, col-2-3, from our existing <iframe> 
element. We also need to be careful not to harm the HTML comment that closes 
directly before our opening <iframe> tag.

Looking directly at the <section> element with the class attribute value of venue-
theatre again, the HTML looks like this:

1. <section class="venue-theatre">

2.

3. <div class="col-1-3">

4. <h2>Chicago Theatre</h2>



Lesson 9 · Adding Media  199

5. <p>175 N State St <br> Chicago, IL 60601</p>

6. <p><a href="http://www.thechicagotheatre.com/">

    thechicagotheatre.com</a> <br> (312) 462-6300</p>

7. </div><!--

8.

9. --><iframe class="col-2-3" src="https://www.google.com/maps/

embed?pb=!1m5!3m3!1m2!1s0x880e2ca55810a493%3A0x4700ddf60fcbfad6!

2schicago+theatre!5e0!3m2!1sen!2sus!4v1388701393606"></iframe>

10.

11. </section>

7. Lastly, we’ll want to make sure that both <iframe> elements that reference Google Maps 
share the same height. To do this, we’ll create a new class, venue-map, and apply it to 
each of the <iframe> elements alongside the existing col-2-3 class attribute value.

The HTML for the <section> element with the class attribute value of venue-theatre 
now looks like this:

1. <section class="venue-theatre">

2.

3. <div class="col-1-3">

4. <h2>Chicago Theatre</h2>

5. <p>175 N State St <br> Chicago, IL 60601</p>

6. <p><a href="http://www.thechicagotheatre.com/">

    thechicagotheatre.com</a> <br> (312) 462-6300</p>

7. </div><!--

8.

9. --><iframe class="venue-map col-2-3" src=

  "https://www.google.com/maps/embed?

  pb=!1m5!3m3!1m2!1s0x880e2ca55810a493%3A0x4700ddf60fcbfad6!

  2schicago+theatre!5e0!3m2!1sen!2sus!4v1388701393606"></iframe>

10.

11. </section>

Once the venue-map class is applied to each <iframe> element, let’s create the 
venue-map class rule set within our main.css file. It includes the height property 
with a value of 264 pixels.

The venue-map class rule set looks like this:

1. .venue-map {

2. height: 264px;

3. }



200 Learn to Code HTML & CSS

We now have a Venue page (see Figure 9.14), complete with maps for the  
different locations of our conference.

Figure 9.14 Our Styles Conference Venue page, which now includes inline frames

The source code for the exercises within this lesson can be found at  
http://learn.shayhowe.com/html-css/adding-media.

http://learn.shayhowe.com/html-css/adding-media


Lesson 9 · Adding Media  201

Semantically Identifying Figures & Captions
With HTML5 also came the introduction of the <figure> and <figcaption> elements. 
These elements were created to semantically mark up self-contained content or media, 
commonly with a caption. Before HTML5 this was frequently done using an ordered list. 
While an ordered list worked, the markup was not semantically correct.

Figure
The <figure> block-level element is used to identify and wrap self-contained content, 
often in the form of media. It may surround images, audio clips, videos, blocks of code, 
diagrams, illustrations, or other self-contained media. More than one item of self-contained 
content, such as multiple images or videos, may be contained within the <figure> element 
at a time. If the <figure> element is moved from the main portion of a page to another 
location (for example, the bottom of the page), it should not disrupt the content or legibility 
of the page.

1. <figure>

2. <img src="dog.jpg" alt="A black, brown, and white dog wearing a

kerchief">

3. </figure>

Figure 9.15 A self-contained image placed within a <figure> element



202 Learn to Code HTML & CSS

Figure Caption
To add a caption or legend to the <figure> element, the <figcaption> element is used. 
The <figcaption> may appear at the top of, bottom of, or anywhere within the <figure> 
element; however, it may only appear once. When it’s used, the <figcaption> element 
will serve as the caption for all content within the <figure> element.

Additionally, the <figcaption> element may replace an <img> element’s alt attribute 
if the content of the <figcaption> element provides a useful description of the visual 
content of the image.

1. <figure>

2. <img src="dog.jpg">

3. <figcaption>A beautiful black, brown, and white hound dog wearing

a kerchief.</figcaption>

4. </figure>

Figure 9.16 A self-contained image placed within a <figure> element,  
including a <figcaption> element

Not all forms of media need to be included within a <figure> element or include a  
<figcaption> element; only those that are self-contained and belong together as a group.



Lesson 9 · Adding Media  203

Summary
Alongside text, media is one of the largest parts of the web. Use of images, audio, and 
video has only grown over recent years, and it isn’t likely to slow down. Now we know 
how to incorporate these forms of media into our designs and how we can use them to 
enrich the content on our websites.

Within this lesson we covered the following:

• The best ways to add images, audio clips, videos, and inline frames to a page

• Different ways to position images in different situations

• How to provide audio and video fallbacks for older browsers

• Common attributes available to audio clips and videos

• The seamless attribute, which allows us to make inline frames behave as if they are 
part of the page they are referenced from

• The semantic way to mark up self-contained content, including media

We’re coming into the homestretch of learning HTML and CSS, with only a few more 
components left to introduce. Next on the list are forms.



Lesson 10

Building Forms

Forms are an essential part of the Internet, as they provide a way  

for websites to capture information from users and to process 

requests, and they offer controls for nearly every imaginable use  

of an application. Through controls or fields, forms can request 

a small amount of information—often a search query or a  

username and password—or a large amount of information— 

perhaps shipping and billing information or an entire job 

application.

We need to know how to build forms in order to acquire user 

input. In this lesson we’ll discuss how to use HTML to mark 

up a form, which elements to use to capture different types of 

data, and how to style forms with CSS. We won’t get too deep 

into how information from a form is processed and handled on 

the back end of a website. Form processing is a deeper topic, 

outside the realm of this book; for now we’ll stick to the creation 

and styling of forms.



Lesson 10 · Building Forms  205

Initializing a Form
To add a form to a page, we’ll use the <form> element. The <form> element identifies 
where on the page control elements will appear. Additionally, the <form> element will 
wrap all of the elements included within the form, much like a <div> element.

1. <form action="/login" method="post">

2. ...

3. </form>

A handful of different attributes can be applied to the <form> element, the most common 
of which are action and method. The action attribute contains the URL to which infor-
mation included within the form will be sent for processing by the server. The method 
attribute is the HTTP method browsers should use to submit the form data. Both of these 
<form> attributes pertain to submitting and processing data.

Text Fields & Textareas
When it comes to gathering text input from users, there are a few different elements 
available for obtaining data within forms. Specifically, text fields and textareas are used 
for collecting text- or string-based data. This data may include passages of text content, 
passwords, telephone numbers, and other information.

Text Fields
One of the primary elements used to obtain text from users is the <input> element. The 
<input> element uses the type attribute to define what type of information is to be cap-
tured within the control. The most popular type attribute value is text, which denotes a 
single line of text input.

Along with setting a type attribute, it is best prac-
tice to give an <input> element a name attribute as 
well. The name attribute value is used as the name 
of the control and is submitted along with the input 
data to the server (see Figure 10.1).

1. <input type="text" name="username">

The <input> element is self-contained, meaning it uses only one tag and it does not  
wrap any other content. The value of the element is provided by its attributes and their 
corresponding values.

Figure 10.1 A self-contained text input 
created with the <input> element



206 Learn to Code HTML & CSS

Originally, the only two text-based type attribute values were text and password (for 
password inputs); however, HTML5 brought along a handful of new type attribute values. 
These values were added to provide clearer semantic meaning for inputs as well as to 
provide better controls for users. Should a browser not understand one of these HTML5 
type attribute values, it will automatically fall back to the text attribute value. Below is a 
list of the new HTML5 input types.

• color

• date

• datetime

• email

• month

• number

• range

• search

• tel

• time

• url

• week

The following <input> elements show a few of these HTML5 type attribute values in 
use; Figures 10.2 through 10.7 show how these unique values may look within iOS. Notice 
how the different values provide different controls, all of which make gathering input 
from users easier.

1. <input type="date" name="birthday">

2. <input type="time" name="game-time">

3. <input type="email" name="email-address">

4. <input type="url" name="website">

5. <input type="number" name="cost">

6. <input type="tel" name="phone-number">

Figure 10.2 iOS7 controls for an <input>  
element with a type attribute value of date

Figure 10.3 iOS7 controls for an <input>  
element with a type attribute value of time



Lesson 10 · Building Forms  207

Figure 10.4 iOS7 controls for an <input>  
element with a type attribute value of email

Figure 10.5 iOS7 controls for an <input>  
element with a type attribute value of url

Figure 10.6 iOS7 controls for an <input>  
element with a type attribute value of number

Figure 10.7 iOS7 controls for an <input>  
element with a type attribute value of tel



208 Learn to Code HTML & CSS

Textarea
Another element that’s used to capture text-based data is the <textarea> element. The 
<textarea> element differs from the <input> element in that it can accept larger passages 
of text spanning multiple lines. The <textarea> ele-
ment also has start and end tags that can wrap plain 
text. Because the <textarea> element only accepts one 
type of value, the type attribute doesn’t apply here, but 
the name attribute is still used (see Figure 10.8).

1. <textarea name="comment">Add your comment here</textarea>

The <textarea> element has two sizing attributes: cols for width in terms of the average 
character width and rows for height in terms of the number of lines of visible text. The 
size of a textarea, however, is more commonly identified using the width and height 
properties within CSS.

Multiple Choice Inputs & Menus
Apart from text-based input controls, HTML also allows users to select data using multiple 
choice and drop-down lists. There are a few different options and elements for these 
form controls, each of which has distinctive benefits.

Radio Buttons
Radio buttons are an easy way to allow users to make a quick choice from a small list of 
options. Radio buttons permit users to select one option only, as opposed to multiple options.

To create a radio button, the <input> element is used with a type attribute value of 
radio. Each radio button element should have the same name attribute value so that all  
of the buttons within a group correspond to one another.

With text-based inputs, the value of an input is determined by what a user types in; with 
radio buttons a user is making a multiple choice selection. Thus, we have to define the 
input value. Using the value attribute, we can set a specific value for each <input> element.

Figure 10.8 An example of a 
<textarea> element



Lesson 10 · Building Forms  209

Additionally, to preselect a radio button for users we can use the Boolean attribute checked.

1. <input type="radio" name="day" value="Friday" checked> Friday

2. <input type="radio" name="day" value="Saturday"> Saturday

3. <input type="radio" name="day" value="Sunday"> Sunday

Figure 10.9 A group of radio buttons created 
by way of the <input> element with a type 
attribute value of radio

Check Boxes
Check boxes are very similar to radio buttons. They use the same attributes and patterns, 
with the exception of checkbox as their type attribute value. The difference between 
the two is that check boxes allow users to select multiple values and tie them all to one 
control name, while radio buttons limit users to one value.

1. <input type="checkbox" name="day" value="Friday" checked> Friday

2. <input type="checkbox" name="day" value="Saturday"> Saturday

3. <input type="checkbox" name="day" value="Sunday"> Sunday

Figure 10.10 A group of check boxes created 
using the <input> element with a type  
attribute value of checkbox

Drop-Down Lists
Drop-down lists are a perfect way to provide users with a long list of options in a practi-
cal manner. A long column of radio buttons next to a list of different options is not only 
visually unappealing, it’s daunting and difficult for users to comprehend, especially those 
on a mobile device. Drop-down lists, on the other hand, provide the perfect format for a 
long list of choices.

To create a drop-down list we’ll use the <select> and <option> elements. The <select> 
element wraps all of the menu options, and each menu option is marked up using the 
<option> element.



210 Learn to Code HTML & CSS

The name attribute resides on the <select> element, and the value attribute resides  
on the <option> elements that are nested within the <select> element. The value  
attribute on each <option> element then corresponds to the name attribute on the 
<select> element.

Each <option> element wraps the text (which is visible to users) of an individual option 
within the list.

Much like the checked Boolean attribute for radio buttons and check boxes, drop-down 
menus can use the selected Boolean attribute to preselect an option for users.

1. <select name="day">

2. <option value="Friday" selected>Friday</option>

3. <option value="Saturday">Saturday</option>

4. <option value="Sunday">Sunday</option>

5. </select>

Multiple Selections
The Boolean attribute multiple, when added to the <select> element for a standard 
drop-down list, allows a user to choose more than one option from the list at a time. 
Additionally, using the selected Boolean attribute on more than one <option> element 
within the menu will preselect multiple options.

The size of the <select> element can be controlled using CSS and should be adjusted 
appropriately to allow for multiple selections. It may be worthwhile to inform users that 
to choose multiple options they will need to hold down the Shift key while clicking to 
make their selections.

1. <select name="day" multiple>

2. <option value="Friday" selected>Friday</option>

3. <option value="Saturday">Saturday</option>

4. <option value="Sunday">Sunday</option>

5. </select>

Figure 10.11 A drop-down  
menu created using the <input> 
and <option> elements

Figure 10.12 A drop-down 
list that allows users to select 
multiple options



Lesson 10 · Building Forms  211

Form Buttons
After a user inputs the requested information, buttons allow the user to put that infor-
mation into action. Most commonly, a submit input or submit button is used to process 
the data.

Submit Input
Users click the submit button to process data after fill-
ing out a form. The submit button is created using the 
<input> element with a type attribute value of submit. 
The value attribute is used to specify the text that appears 
within the button (see Figure 10.13).

1. <input type="submit" name="submit" value="Send">

Submit Button
As an <input> element, the submit button is self-contained and cannot wrap any other 
content. If more control over the structure and design of the input is desired—along with 
the ability to wrap other elements—the <button> element may be used.

The <button> element performs the same way as the <input> element with the type 
attribute value of submit; however, it includes opening and closing tags, which may wrap 
other elements. By default, the <button> element acts as if it has a type attribute value 
of submit, so the type attribute and value may be omitted from the <button> element if 
you wish.

Rather than using the value attribute to control the text 
within the submit button, the text that appears between 
the opening and closing tags of the <button> element will 
appear (see Figure 10.14).

1. <button name="submit">

2. <strong>Send Us</strong> a Message

3. </button>

Figure 10.13 A submit button 
created by way of the <input> 
element with a type attribute 
value of submit

Figure 10.14 A submit button 
created using the <button> 
element



212 Learn to Code HTML & CSS

Other Inputs
Besides the applications we’ve just discussed, the <input> element has a few other use 
cases. These include passing hidden data and attaching files during form processing.

Hidden Input
Hidden inputs provide a way to pass data to the server without displaying it to users. 
Hidden inputs are typically used for tracking codes, keys, or other information that is 
not pertinent to the user but is helpful when processing the form. This information is not 
displayed on the page; however, it can be found by viewing the source code of a page.  
It should therefore not be used for sensitive or secure information.

To create a hidden input, you use the hidden value for the type attribute. Additionally, 
include the appropriate name and value attribute values.

1. <input type="hidden" name="tracking-code" value="abc-123">

File Input
To allow users to add a file to a form, much like 
attaching a file to an email, use the file value for 
the type attribute (see Figure 10.15).

1. <input type="file" name="file">

Unfortunately, styling an <input> element that 
has a type attribute value of file is a tough task 
with CSS. Each browser has its own default input style, and none provide much control to 
override the default styling. JavaScript and other solutions can be employed to allow for 
file input, but they are slightly more difficult to construct.

Organizing Form Elements
Knowing how to capture data with inputs is half the battle. Organizing form elements and 
controls in a usable manner is the other half. When interacting with forms, users need to 
understand what is being asked of them and how to provide the requested information. 

Figure 10.15 An input to upload a file 
created by way of the <input> element 
with a type attribute value of file



Lesson 10 · Building Forms  213

By using labels, fieldsets, and legends, we can better organize forms and guide users to 
properly complete them.

Label
Labels provide captions or headings for form controls, unambiguously tying them together 
and creating an accessible form for all users and assistive technologies. Created using 
the <label> element, labels should include text that describes the inputs or controls they 
pertain to.

Labels may include a for attribute. The value of the for attribute should be the same as 
the value of the id attribute on the form control the label corresponds to. Matching up 
the for and id attribute values ties the two elements together, allowing users to click on 
the <label> element to bring focus to the proper form control (see Figure 10.16).

1. <label for="username">Username</label>

2. <input type="text" name="username" id="username">

Figure 10.16 A label and form con-
trol that are bound together

If desired, the <label> element may wrap form controls, such as radio buttons or check 
boxes (see Figure 10.17). Doing so allows omission of the for and id attributes.

Figure 10.17 Form controls nested within a 
given label, allowing the omission of the for 
and id attributes

1. <label>

2. <input type="radio" name="day" value="Friday" checked> Friday

3. </label>

4. <label>

5. <input type="radio" name="day" value="Saturday"> Saturday

6. </label>

7. <label>

8. <input type="radio" name="day" value="Sunday"> Sunday

9. </label>



214 Learn to Code HTML & CSS

Fieldset
Fieldsets group form controls and labels into organized sections. Much like a <section> 
or other structural element, the <fieldset> is a block-level element that wraps related 
elements, specifically within a <form> element, for better organization (see Figure 10.18). 
Fieldsets, by default, also include a border outline, which can be modified using CSS.

1. <fieldset>

2. <label>

3. Username

4. <input type="text" name="username">

5. </label>

6. <label>

7. Password

8. <input type="text" name="password">

9. </label>

10. </fieldset>

Figure 10.18 Form controls and labels organized within a <fieldset> element

Legend
A legend provides a caption, or heading, for the <fieldset> element. The <legend> 
element wraps text describing the form controls that fall within the fieldset. The markup 
should include the <legend> element directly after the opening <fieldset> tag. On the 
page, the legend will appear within the top left part of the fieldset border (see Figure 10.19).

1. <fieldset>

2. <legend>Login</legend>

3. <label>

4. Username

5. <input type="text" name="username">

6. </label>

7. <label>

8. Password

9. <input type="text" name="password">



Lesson 10 · Building Forms  215

10. </label>

11. </fieldset>

Figure 10.19 Form controls and labels organized within a  
<fieldset> element that includes a <legend> element

Form & Input Attributes
To accommodate all of the different form, input, and control elements, there are a number 
of attributes and corresponding values. These attributes and values serve a handful of 
different functions, such as disabling controls and adding form validation. Described next 
are some of the more frequently used and helpful attributes.

Disabled
The disabled Boolean attribute turns off an element or control so that it is not available 
for interaction or input. Elements that are disabled will not send any value to the server 
for form processing.

Applying the disabled Boolean attribute to a 
<fieldset> element will disable all of the form  
controls within the fieldset. If the type attribute  
has a hidden value, the hidden Boolean attribute  
is ignored.

1. <label>

2. Username

3. <input type="text" name="username" disabled>

4. </label>

Figure 10.20 A disabled input form 
control



216 Learn to Code HTML & CSS

Placeholder
The placeholder HTML5 attribute provides a hint or tip within the form control of an 
<input> or <textarea> element that disappears once the control is clicked in or gains 
focus (see Figure 10.21). This is used to give 
users further information on how the form 
input should be filled in, for example, the email 
address format to use.

1. <label>

2. Email Address

3. <input type="email" name="email-address" 

placeholder="name@domain.com">

4. </label>

The main difference between the placeholder and value attributes is that the value 
attribute value text stays in place when a control has focus unless a user manually 
deletes it. This is great for pre-populating data, such as personal information, for a user 
but not for providing suggestions.

Required
The required HTML5 Boolean attribute enforces that an element or form control must 
contain a value upon being submitted to the server. Should an element or form control 
not have a value, an error message will be displayed requesting that the user complete 
the required field. Currently, error message styles are controlled by the browser and 
cannot be styled with CSS. Invalid elements and form controls, on the other hand, can be 
styled using the :optional and :required CSS pseudo-classes.

Validation also occurs specific to a control’s type. For example, an <input> element with 
a type attribute value of email will require not only that a value exist within the control, 
but also that it is a valid email address (see Figure 10.22).

1. <label>

2. Email Address

3. <input type="email" name="email-address" required>

4. </label>

Figure 10.22  
A required email input form 
control with an incorrect value

Figure 10.21 An email input form control 
with a placeholder attribute



Lesson 10 · Building Forms  217

Additional Attributes
Other form and form control attributes include, but are not limited to, the following. 
Please feel free to research these attributes as necessary.

• accept

• autocomplete

• autofocus

• formaction

• formenctype

• formmethod

• formnovalidate

• formtarget

• max

• maxlength

• min

• pattern

• readonly

• selectionDirection

• step

Login Form Example
The following is an example of a complete login form 
that includes several different elements and attributes 
to illustrate what we’ve covered so far. These elements 
are then styled using CSS (see Figure 10.23).

HTML

1. <form>

2. <fieldset class="account-info">

3. <label>

4. Username

5. <input type="text" name="username">

6. </label>

7. <label>

8. Password

9. <input type="password" name="password">

10. </label>

11. </fieldset>

12. <fieldset class="account-action">

13. <input class="btn" type="submit" name="submit" value="Login">

14. <label>

15. <input type="checkbox" name="remember"> Stay signed in

16. </label>

17. </fieldset>

18. </form>

Figure 10.23 An example of a 
login form



218 Learn to Code HTML & CSS

CSS

1. *,

2. *:before,

3. *:after {

4. -webkit-box-sizing: border-box;

5. -moz-box-sizing: border-box;

6. box-sizing: border-box;

7. }

8. form {

9. border: 1px solid #c6c7cc;

10. border-radius: 5px;

11. font: 14px/1.4 "Helvetica Neue", Helvetica, Arial, sans-serif;

12. overflow: hidden;

13. width: 240px;

14. }

15. fieldset {

16. border: 0;

17. margin: 0;

18. padding: 0;

19. }

20. input {

21. border-radius: 5px;

22. font: 14px/1.4 "Helvetica Neue", Helvetica, Arial, sans-serif;

23. margin: 0;

24. }

25. .account-info {

26. padding: 20px 20px 0 20px;

27. }

28. .account-info label {

29. color: #395870;

30. display: block;

31. font-weight: bold;

32. margin-bottom: 20px;

33. }

34. .account-info input {

35. background: #fff;

36. border: 1px solid #c6c7cc;

37. -webkit-box-shadow: inset 0 1px 1px rgba(0, 0, 0, .1);



Lesson 10 · Building Forms  219

38. -moz-box-shadow: inset 0 1px 1px rgba(0, 0, 0, .1);

39. box-shadow: inset 0 1px 1px rgba(0, 0, 0, .1);

40. color: #636466;

41. padding: 6px;

42. margin-top: 6px;

43. width: 100%;

44. }

45. .account-action {

46. background: #f0f0f2;

47. border-top: 1px solid #c6c7cc;

48. padding: 20px;

49. }

50. .account-action .btn {

51. background: -webkit-linear-gradient(#49708f, #293f50);

52. background:    -moz-linear-gradient(#49708f, #293f50);

53. background:         linear-gradient(#49708f, #293f50);

54. border: 0;

55. color: #fff;

56. cursor: pointer;

57. font-weight: bold;

58. float: left;

59. padding: 8px 16px;

60. }

61. .account-action label {

62. color: #7c7c80;

63. font-size: 12px;

64. float: left;

65. margin: 10px 0 0 20px;

66. }

In Practice
With an understanding of how to build forms in place, let’s create a registration page for 
our Styles Conference website so that we can begin to gather interest and sell tickets for 
the event.

1. Jumping into our register.html file, we’ll begin by following the same layout pat-
tern we used on our Speakers and Venue pages. This includes adding a <section> 
element with a class attribute value of row just below the registration lead-in section 



220 Learn to Code HTML & CSS

and nesting a <div> element with a class attribute value of grid directly inside the 
<section> element.

Our code just below the lead-in section for the Register page should look like this:

1. <section class="row">

2. <div class="grid">

3. ...

4. </div>

5. </section>

As a refresher, the class attribute value of row adds a white background and 
provides some vertical padding, while the class attribute value of grid centers our 
content in the middle of the page and provides some horizontal padding.

2. Inside the <div> element with a class attribute value of grid we’re going to create 
two columns, one covering two-thirds of the page width and one covering one-third 
of the page width. The two-thirds column will be a <section> element on the left-
hand side that tells users why they should register for our conference. The one-third 
column, then, will be a <form> element on the right-hand side providing a way for 
users to register for our conference.

We’ll add these two elements, and their corresponding col-2-3 and col-1-3 
classes, directly inside the <div> element with a class attribute value of grid. Since 
both of these elements will be inline-block elements, we need to open a comment 
directly after the two-thirds column closing tag and then close that comment directly 
before the one-third column opening tag.

In all, our code should look like this:

1. <section class="row">

2. <div class="grid">

3.

4. <section class="col-2-3">

5. ...

6. </section><!--

7.

8. --><form class="col-1-3">

9. ...

10. </form>

11.

12. </div>

13. </section>



Lesson 10 · Building Forms  221

3. Now, inside our two-thirds column let’s add some details about our event and why 
it’s a good idea for aspiring designers and front-end developers to attend. We’ll do so 
using a handful of different heading levels (along with their pre-established styles),  
a paragraph, and an unordered list.

In our <section> element with a class attribute value of col-2-3, the code should 
look like this:

1. <section class="col-2-3">

2.

3. <h2>Purchase a Conference Pass</h2>

4. <h5>$99 per Pass</h5>

5.

6. <p>Purchase your Styles Conference pass using the form to the

right. Multiple passes may be purchased within the same order,

so feel free to bring a friend or two along. Once your order is

finished we&#8217;ll follow up and provide a receipt for your

purchase. See you soon!</p>

7.

8. <h4>Why Attend?</h4>

9.

10. <ul>

11. <li>Over twenty world-class speakers</li>

12. <li>One full day of workshops and two full days of

presentations</li>

13. <li>Hosted at The Chicago Theatre, a historical landmark</li>

14. <li>August in Chicago is simply amazing</li>

15. </ul>

16.

17. </section>

4. Currently our unordered list doesn’t have any list item markers. All of the browser 
default styles have been turned off by the CSS reset we added all the way back in 
Lesson 1. Let’s create some custom styles specifically for this unordered list.

To do so, let’s add a class attribute value of why-attend to the unordered list.

1. <ul class="why-attend">

2. ...

3. </ul>



222 Learn to Code HTML & CSS

With a class available to add styles to, let’s create a new section for Register page 
styles at the bottom of our main.css file. Within this section let’s use the class to 
select the unordered list and add a list-style of square and some bottom and  
left margins.

The new section at the bottom of our main.css file should look like this:

1. /*

2. ========================================

3. Register

4. ========================================

5. */

6.

7. .why-attend {

8. list-style: square;

9. margin: 0 0 22px 30px;

10. }

5. The details section of our registration page is complete, so now it’s time to address 
our registration form. We’ll start by adding the action and method attributes to the 
<form> element. Since we haven’t set up our form processing, these attributes will 
simply serve as placeholders and will need to be revisited.

The code for our <form> element should look like this:

1. <form class="col-1-3" action="#" method="post">

2. ...

3. </form>

6. Next, inside the <form> element we’ll add a <fieldset> element. Inside the 
<fieldset> element we’ll add a series of <label> elements that wrap a given  
form control.

We want to collect a user’s name, email address, number of desired conference passes, 
and any potential comments. The name, email address, and number of conference 
passes are required fields, and we’ll want to make sure we use the appropriate ele-
ments and attributes for each form control.

With a mix of different input types, select menus, textareas, and attributes, the code 
for our form should look like the following:

1. <form class="col-1-3" action="#" method="post">

2.

3. <fieldset>



Lesson 10 · Building Forms  223

4.

5. <label>

6. Name

7. <input type="text" name="name" placeholder="Full name"

required>

8. </label>

9.

10. <label>

11. Email

12. <input type="email" name="email" placeholder="Email address"

required>

13. </label>

14.

15. <label>

16. Number of Passes

17. <select name="quantity" required>

18. <option value="1" selected>1</option>

19. <option value="2">2</option>

20. <option value="3">3</option>

21. <option value="4">4</option>

22. <option value="5">5</option>

23. </select>

24. </label>

25.

26. <label>

27. Comments

28. <textarea name="comments"></textarea>

29. </label>

30.

31. </fieldset>

32.

33. <input type="submit" name="submit" value="Purchase">

34.

35. </form>

Here we can see each form control nested within a <label> element. The Name 
form control uses an <input> element with a type attribute value of text, while the 
Email form control uses an <input> element with a type attribute value of email. 



224 Learn to Code HTML & CSS

Both the Name and Email form controls include the required Boolean attribute and 
a placeholder attribute.

The Number of Passes form control uses the <select> element and nested 
<option> elements. The <select> element itself includes the required Boolean 
attribute, and the first <option> element includes the selected Boolean attribute.

The Comments form control uses the <textarea> element without any special mod-
ifications. And lastly, outside of the <fieldset> element is the submit form control, 
which is formed by an <input> element with a type attribute value of submit.

7. With the form in place, it’s time to add styles to it. We’ll begin with a few default 
styles on the <form> element itself and on the <input>, <select>, and <textarea> 
elements.

Within the register section of our main.css file we’ll want to add the following styles:

1. form {

2. margin-bottom: 22px;

3. }

4. input,

5. select,

6. textarea {

7. font: 300 16px/22px "Lato", "Open Sans", "Helvetica Neue",

  Helvetica, Arial, sans-serif;

8. }

We’ll start by placing a 22-pixel margin on the bottom of our form to help vertically 
space it apart from other elements. Then we’ll add some standard font-based 
styles—including weight, size, line-height, and family—for all of the <input>, 
<select>, and <textarea> elements.

By default, every browser has its own interpretation of how the styles for form con-
trols should appear. With this in mind, we have repeated the font-based styles from 
our <body> element to ensure that our styles remain consistent.

8. Let’s add some styles to the elements within the <fieldset> element. Since we 
may add additional <fieldset> elements later on, let’s add a class attribute value of 
register-group to our existing <fieldset> element, and from there we can apply 
unique styles to the elements nested within it.

1. <fieldset class="register-group">

2. ...

3. </fieldset>



Lesson 10 · Building Forms  225

Once the register-group class attribute value is in place, we’ll add a few styles to 
the elements nested within the <fieldset> element. These styles will appear in our 
main.css file, below the existing form styles.

1. .register-group label {

2. color: #648880;

3. cursor: pointer;

4. font-weight: 400;

5. }

6. .register-group input,

7. .register-group select,

8. .register-group textarea {

9. border: 1px solid #c6c9cc;

10. border-radius: 5px;

11. color: #888;

12. display: block;

13. margin: 5px 0 27px 0;

14. padding: 5px 8px;

15. }

16. .register-group input,

17. .register-group textarea {

18. width: 100%;

19. }

20. .register-group select {

21. height: 34px;

22. width: 60px;

23. }

24. .register-group textarea {

25. height: 78px;

26. }

You’ll notice that most of these properties and values revolve around the box model, 
which we covered in Lesson 4. We’re primarily setting up the size of different form 
controls, ensuring that they are laid out appropriately. Aside from adding some box 
model styles, we’re adjusting the color and font-weight of a few elements.

9. So far, so good: our form is coming together quite nicely. The only remaining element 
yet to be styled is the submit button. As it’s a button, we actually have some existing  
styles we can apply here. If we think back to our home page, our hero section con-
tained a button that received some styles by way of the btn class attribute value.



226 Learn to Code HTML & CSS

Let’s add this class attribute value, btn, along with a new class attribute value of 
btn-default to our submit button. Specifically we’ll use the class name of btn-
default since this button is appearing on a white background and will be the 
default style for buttons moving forward.

1. <input class="btn btn-default" type="submit" name="submit"

value="Purchase">

Now our submit button has some shared styles with the button on the home page. 
We’ll use the btn-default class attribute value to then apply some new styles to 
our submit button specifically.

Going back to the buttons section of our main.css file, let’s add the following:

1. .btn-default {

2. border: 0;

3. background: #648880;

4. padding: 11px 30px;

5. font-size: 14px;

6. }

7. .btn-default:hover {

8. background: #77a198;

9. }

These new styles, which define the size and background of our submit button, are 
then combined with the existing btn class styles to create the final presentation of 
our submit button.

Our Register page is finished, and attendees can now begin to reserve their tickets  
(see Figure 10.24).

The source code for the exercises within this lesson can be found at  
http://learn.shayhowe.com/html-css/building-forms.

http://learn.shayhowe.com/html-css/building-forms


Lesson 10 · Building Forms  227

Figure 10.24 Our registration page, which includes a form



228 Learn to Code HTML & CSS

Summary
Forms play a large role in how users interact with, provide information to, and take action 
on websites. We’ve taken all the right steps to learn not only how to mark up forms but 
also how to style them.

To quickly recap, within this lesson we discussed the following:

• How to initialize a form

• Ways to obtain text-based information from users

• Different elements and methods for creating multiple choice options and menus

• Which elements and attributes are best used to submit a form’s data for processing

• How best to organize forms and give form controls structure and meaning

• A handful of attributes that help collect more qualified data

Our understanding of HTML and CSS is progressing quite nicely, and we only have one 
more component to learn: tables. In the next chapter, we’ll take a look at how to organize 
and present data with tables.



Lesson 11

Organizing Data with Tables

HTML tables were created to provide a straightforward way to 

mark up structured tabular data and to display that data in a 

form that is easy for users to read and digest.

When HTML was being developed, however, CSS was not widely 

supported in browsers, so tables were the primary means by  

which websites were built. They were used for positioning content 

as well as for building the overall layout of a page. This worked 

at the time, but it was not what table markup was intended for, 

and it led to many other associated problems.

Fortunately, we have come a long way since then. Today tables 

are used specifically for organizing data (like they should be), 

and CSS is free to get on with the jobs of positioning and layout.

Building data tables still has its challenges. How a table should 

be built in HTML depends largely on the data and how it is to 

be displayed. Then, once they’re marked up in HTML, tables 

need to be styled with CSS to make the information more legible 

and understandable to users.



230 Learn to Code HTML & CSS

Creating a Table
Tables are made up of data that is contained within columns and rows, and HTML supplies 
several different elements for defining and structuring these items. At a minimum a table 
must consist of <table>, <tr> (table row), and <td> (table data) elements. For greater 
structure and additional semantic value, tables may include the <th> (table header) ele-
ment and a few other elements as well. When all of these elements are working together, 
they produce a solid table.

Table
We use the <table> element to initialize a table on a page. Using the <table> element 
signifies that the information within this element will be tabular data displayed in the 
necessary columns and rows.

1. <table>

2. ...

3. </table>

Table Row
Once a table has been defined in HTML, table rows may be added using the <tr>  
element. A table can have numerous table rows, or <tr> elements. Depending on the 
amount of information there is to display, the number of table rows may be substantial.

1. <table>

2. <tr>

3. ...

4. </tr>

5. <tr>

6. ...

7. </tr>

8. </table>



Lesson 11 · Organizing Data with Tables  231

Table Data
Once a table is defined and rows within that table have been set up, data cells may be 
added to the table via the table data, or <td>, element. Listing multiple <td> elements 
one after the other will create columns within a table row (see Figure 11.1).

Figure 11.1 A table of books that includes multiple columns and rows

1. <table>

2. <tr>

3. <td>Don&#8217;t Make Me Think by Steve Krug</td>

4. <td>In Stock</td>

5. <td>1</td>

6. <td>$30.02</td>

7. </tr>

8. <tr>

9. <td>A Project Guide to UX Design by Russ Unger &#38; Carolyn

Chandler</td>

10. <td>In Stock</td>

11. <td>2</td>

12. <td>$52.94 ($26.47 &#215; 2)</td>

13. </tr>

14. <tr>

15. <td>Introducing HTML5 by Bruce Lawson &#38; Remy Sharp</td>

16. <td>Out of Stock</td>

17. <td>1</td>

18. <td>$22.23</td>

19. </tr>

20. <tr>

21. <td>Bulletproof Web Design by Dan Cederholm</td>

22. <td>In Stock</td>

continues



232 Learn to Code HTML & CSS

23. <td>1</td>

24. <td>$30.17</td>

25. </tr>

26. </table>

Table Header
To designate a heading for a column or row of cells, the table header element, <th>, 
should be used. The <th> element works just like the <td> element in that it creates a 
cell for data. The value to using the <th> element over the <td> element is that the table 
header element provides semantic value by signifying that the data within the cell is a 
heading, while the <td> element only represents a generic piece of data.

The difference between the two elements is similar to the difference between headings 
(<h1> through <h6> elements) and paragraphs (<p> elements). While a heading’s con-
tent could be placed within a paragraph, it doesn’t make sense to do so. Specifically using 
a heading adds more semantic value to the content. The same is true for table headers.

Table headers may be used within both columns and rows; the data within a table deter-
mines where the headers are appropriate. The scope attribute helps to identify exactly 
what content a table header relates to. The scope attribute indicates with the values col, 
row, colgroup, and rowgroup whether a table header applies to a row or column. The 
most commonly used values are col and row. The col value indicates that every cell 
within the column relates directly to that table header, and the row value indicates that 
every cell within the row relates directly to that table header.

Using the <th> element, along with the scope attribute, tremendously helps screen read-
ers and assistive technologies make sense of a table. Therefore, they are also beneficial 
to those browsing a web page using those technologies.

Additionally, depending on the browser, table headers may receive some default styling, 
usually bold and centered (see Figure 11.2).

1. <table>

2. <tr>

3. <th scope="col">Item</th>

4. <th scope="col">Availability</th>

5. <th scope="col">Qty</th>

6. <th scope="col">Price</th>

7. </tr>

8. <tr>



Lesson 11 · Organizing Data with Tables  233

9. <td>Don&#8217;t Make Me Think by Steve Krug</td>

10. <td>In Stock</td>

11. <td>1</td>

12. <td>$30.02</td>

13. </tr>

14. <tr>

15. <td>A Project Guide to UX Design by Russ Unger &#38;

Carolyn Chandler</td>

16. <td>In Stock</td>

17. <td>2</td>

18. <td>$52.94 ($26.47 &#215; 2)</td>

19. </tr>

20. <tr>

21. <td>Introducing HTML5 by Bruce Lawson &#38; Remy Sharp</td>

22. <td>Out of Stock</td>

23. <td>1</td>

24. <td>$22.23</td>

25. </tr>

26. <tr>

27. <td>Bulletproof Web Design by Dan Cederholm</td>

28. <td>In Stock</td>

29. <td>1</td>

30. <td>$30.17</td>

31. </tr>

32. </table>

Figure 11.2 A table of books that includes table headers

Getting data into a table is only the beginning. While we’ve scratched the surface of how 
to semantically add data to a table, there is more we can do to define the structure of  
our tables.



234 Learn to Code HTML & CSS

The Headers Attribute

The headers attribute is very similar to the scope attribute. By default, the scope attri-
bute may only be used on the <th> element. In the case that a cell, either a <td> or <th> 
element, needs to be associated with a different header, the headers attribute comes 
into play. The value of the headers attribute on a <td> or <th> element needs to match 
the id attribute value of the <th> element that cell pertains to.

Table Structure
Knowing how to build a table and arrange data is extremely powerful; however, there are 
a few additional elements to help us organize the data and structure of a table. These ele-
ments include <caption>, <thead>, <tbody>, and <tfoot>.

Table Caption
The <caption> element provides a caption or title for a table. A caption will help users 
identify what the table pertains to and what data they can expect to find within it. The 
<caption> element must come immediately after the opening <table> tag, and it is 
positioned at the top of a table by default (see Figure 11.3).

1. <table>

2. <caption>Design and Front-End Development Books</caption>

3. ...

4. </table>

Figure 11.3 A table of books with a caption that shows what the table relates to



Lesson 11 · Organizing Data with Tables  235

Table Head, Body, & Foot
The content within tables can be broken up into multiple groups, including a head, a body, 
and a foot. The <thead> (table head), <tbody> (table body), and <tfoot> (table foot) 
elements help to structurally organize tables.

The table head element, <thead>, wraps the heading row or rows of a table to denote the 
head. The table head should be placed at the top of a table, after any <caption> element 
and before any <tbody> element.

After the table head may come either the <tbody> or <tfoot> elements. Originally the 
<tfoot> element had to come immediately after the <thead> element, but HTML5 has 
provided leeway here. These elements may now occur in any order so long as they are 
never parent elements of one another. The <tbody> element should contain the primary 
data within a table, while the <tfoot> element contains data that outlines the contents 
of a table (see Figure 11.4).

1. <table>

2. <caption>Design and Front-End Development Books</caption>

3. <thead>

4. <tr>

5. <th scope="col">Item</th>

6. <th scope="col">Availability</th>

7. <th scope="col">Qty</th>

8. <th scope="col">Price</th>

9. </tr>

10. </thead>

11. <tbody>

12. <tr>

13. <td>Don&#8217;t Make Me Think by Steve Krug</td>

14. <td>In Stock</td>

15. <td>1</td>

16. <td>$30.02</td>

17. </tr>

18. ...

19. </tbody>

20. <tfoot>

21. <tr>

22. <td>Subtotal</td>

continues



236 Learn to Code HTML & CSS

23. <td></td>

24. <td></td>

25. <td>$135.36</td>

26. </tr>

27. <tr>

28. <td>Tax</td>

29. <td></td>

30. <td></td>

31. <td>$13.54</td>

32. </tr>

33. <tr>

34. <td>Total</td>

35. <td></td>

36. <td></td>

37. <td>$148.90</td>

38. </tr>

39. </tfoot>

40. </table>

Figure 11.4 A table of books complete with caption, table head, table body, and table foot elements



Lesson 11 · Organizing Data with Tables  237

Combining Multiple Cells
Often, two or more cells need to be combined into one without breaking the overall row 
and column layout. Perhaps two cells next to each other contain the same data, there’s an 
empty cell, or the cells should be combined for styling purposes. In these cases we can 
use the colspan and rowspan attributes. These two attributes work on either the <td>  
or <th> elements.

The colspan attribute is used to span a single cell across multiple columns within a 
table, while the rowspan attribute is used to span a single cell across multiple rows. Each 
attribute accepts an integer value that indicates the number of cells to span across, with  
1 being the default value.

Using the table of books from before, we can now remove the empty table cells within 
the table footer as well as clean up the table header (see Figure 11.5).

1. <table>

2. <caption>Design and Front-End Development Books</caption>

3. <thead>

4. <tr>

5. <th scope="col" colspan="2">Item</th>

6. <th scope="col">Qty</th>

7. <th scope="col">Price</th>

8. </tr>

9. </thead>

10. <tbody>

11. <tr>

12. <td>Don&#8217;t Make Me Think by Steve Krug</td>

13. <td>In Stock</td>

14. <td>1</td>

15. <td>$30.02</td>

16. </tr>

17. ...

18. </tbody>

19. <tfoot>

20. <tr>

21. <td colspan="3">Subtotal</td>

22. <td>$135.36</td>

23. </tr>

continues



238 Learn to Code HTML & CSS

24. <tr>

25. <td colspan="3">Tax</td>

26. <td>$13.54</td>

27. </tr>

28. <tr>

29. <td colspan="3">Total</td>

30. <td>$148.90</td>

31. </tr>

32. </tfoot>

33. </table>

Figure 11.5 A table of books that contains a couple of cells that span multiple columns or rows

Table Borders
Effective use of borders can help make tables more comprehensible. Borders around a 
table or individual cells can make a large impact when a user is trying to interpret data 
and quickly scan for information. When styling table borders with CSS there are two 
properties that will quickly come in handy: border-collapse and border-spacing.

Border Collapse Property
Tables consist of a parent <table> element as well as nested <th> or <td> elements. 
When we apply borders around these elements those borders will begin to stack up, with 
the border of one element sitting next to that of another element. For example, if we put 



Lesson 11 · Organizing Data with Tables  239

a 2-pixel border around an entire table and then an additional 2-pixel border around each 
table cell, there would be a 4-pixel border around every cell in the table.

The border-collapse property determines a table’s border model. There are three 
values for the border-collapse property: collapse, separate, and inherit. By default, 
the border-collapse property value is separate, meaning that all of the different borders 
will stack up next to one another, as described above. The collapse property, on the 
other hand, condenses the borders into one, choosing the table cell as the primary border 
(see Figure 11.6).

1. table {

2. border-collapse: collapse;

3. }

4. th,

5. td {

6. border: 1px solid #c6c7cc;

7. padding: 10px 15px;

8. }

Figure 11.6 A table with collapsed borders



240 Learn to Code HTML & CSS

Border Spacing Property
As the border-collapse property with the separate value allows borders to be stacked 
up against one another, the border-spacing property can determine how much space,  
if any, appears between the borders.

For example, a table with a 1-pixel border around the entire table and a 1-pixel border 
around each cell will have a 2-pixel border all around every cell because the borders stack 
up next to one another. Adding in a border-spacing value of 4 pixels separates the 
borders by 4 pixels (see Figure 11.7).

1. table {

2. border-collapse: separate;

3. border-spacing: 4px;

4. }

5. table,

6. th,

7. td {

8. border: 1px solid #c6c7cc;

9. }

10. th,

11. td {

12. padding: 10px 15px;

13. }

Figure 11.7 A table with separated borders



Lesson 11 · Organizing Data with Tables  241

The border-spacing property works only when the border-collapse property value 
is separate, its default value. If the border-collapse property hasn’t been previously 
used, we can use the border-spacing property without worry.

Additionally, the border-spacing property may accept two length values: the first  
value for horizontal spacing and the second value for vertical spacing. The declaration 
border-spacing: 5px 10px;, for example, will place 5 pixels of horizontal spacing 
between borders and 10 pixels of vertical spacing between borders.

Adding Borders to Rows
Adding borders to a table can be tricky at times, particularly when putting borders between 
rows. Within a table, borders cannot be applied to <tr> elements or table structural ele-
ments, so when we want to put a border between rows some thought is required.

We’ll begin by making sure the table’s border-collapse property value is set to collapse, 
and then we’ll add a bottom border to each table cell, regardless of whether it’s a <th> 
or <td> element. If we wish, we can remove the bottom border from the cells within the 
last row of the table by using the last-child pseudo-class selector to select the last 
<tr> element within the table and target the <td> elements within that row. Additionally, 
if a table is using the structural elements, we’ll want to make sure to prequalify the last 
row of the table as being within the <tfoot> element (see Figure 11.8).

1. table {

2. border-collapse: collapse;

3. }

4. th,

5. td {

6. border-bottom: 1px solid #c6c7cc;

7. padding: 10px 15px;

8. }

9. tfoot tr:last-child td {

10. border-bottom: 0;

11. }



242 Learn to Code HTML & CSS

Figure 11.8 A table with borders between each row

Table Striping
In the effort to make tables more legible, one common design practice is to “stripe”  
table rows with alternating background colors. This makes the rows clearer and provides 
a visual cue for scanning information. One way to do this is to place a class on every 
other <tr> element and set a background color to that class. Another, easier way is to 
use the :nth-child pseudo-class selector with an even or odd argument to select every 
other <tr> element.

Here, our table of books uses the :nth-child pseudo-class selector with an even  
argument to select all even table rows within the table and apply a gray background. 
Consequently, every other row within the table body is gray (see Figure 11.9).

1. table {

2. border-collapse: separate;

3. border-spacing: 0;

4. }

5. th,

6. td {

7. padding: 10px 15px;

8. }

9. thead {

10. background: #395870;

11. color: #fff;



Lesson 11 · Organizing Data with Tables  243

12. }

13. tbody tr:nth-child(even) {

14. background: #f0f0f2;

15. }

16. td {

17. border-bottom: 1px solid #c6c7cc;

18. border-right: 1px solid #c6c7cc;

19. }

20. td:first-child {

21. border-left: 1px solid #c6c7cc;

22. }

Figure 11.9 A table with striped rows

Within this code there are a few intricacies worth mentioning. To begin, the <table> ele-
ment has an explicit border-collapse property set to separate and a border-spacing 
property set to 0. The reason for this is that the <td> elements include borders, while the  
<th> elements do not. Without the border-collapse property set to separate the borders 
of the <td> elements would make the body and foot of the table wider than the head.

Since the border-collapse property is set to separate we need to be careful as to how 
borders are applied to <td> elements. Here borders are set to the right and bottom of 
all <td> elements. Then, the very first <td> element within a <tr> element will receive a 
left border. As all of the <td> elements stack together so do their borders, providing the 
appearance of a solid border around each element.

Lastly, all <th> elements receive a blue background, and every even <tr> element 
receives a gray background by way of the :nth-child pseudo-class selector.



244 Learn to Code HTML & CSS

Aligning Text
In addition to table borders and striping, the alignment of text within cells, both horizontal 
and vertical, plays an integral role in table formatting. Names, descriptions, and so forth 
are commonly flush left, while numbers and other figures are flush right. Other informa-
tion, depending on its context, may be centered. We can move text horizontally using the 
text-align property in CSS, as we covered in Lesson 6, “Working with Typography.”

To align text vertically, however, the vertical-align property is used. The vertical-
align property works only with inline and table-cell elements—it won’t work for block, 
inline-block, or any other element levels.

The vertical-align property accepts a handful of different values; the most popular 
values are top, middle, and bottom. These values vertically position text in relation to the  
table cell, for table-cell elements, or to the closest parent element, for inline-level elements.

By revising the HTML and CSS to include the text-align and vertical-align proper-
ties, we can clean up the layout of our table of books. Note that the data within the table 
becomes much clearer and more digestible (see Figure 11.10).

Figure 11.10  
A table with multiple  
text alignments



Lesson 11 · Organizing Data with Tables  245

HTML

1. <table>

2. <thead>

3. <tr>

4. <th scope="col" colspan="2">Item</th>

5. <th scope="col">Qty</th>

6. <th scope="col">Price</th>

7. </tr>

8. </thead>

9. <tbody>

10. <tr>

11. <td>

12. <strong class="book-title">Don&#8217;t Make Me Think

</strong> by Steve Krug

13. </td>

14. <td class="item-stock">In Stock</td>

15. <td class="item-qty">1</td>

16. <td class="item-price">$30.02</td>

17. </tr>

18. <tr>

19. <td>

20. <strong class="book-title">A Project Guide to UX Design

</strong> by Russ Unger &#38; Carolyn Chandler

21. </td>

22. <td class="item-stock">In Stock</td>

23. <td class="item-qty">2</td>

24. <td class="item-price">$52.94 <span class="item-multiple">

$26.47 &#215; 2</span></td>

25. </tr>

26. <tr>

27. <td>

28. <strong class="book-title">Introducing HTML5</strong> by

Bruce Lawson &#38; Remy Sharp

29. </td>

30. <td class="item-stock">Out of Stock</td>

31. <td class="item-qty">1</td>

32. <td class="item-price">$22.23</td>

continues



246 Learn to Code HTML & CSS

33. </tr>

34. <tr>

35. <td>

36. <strong class="book-title">Bulletproof Web Design</strong>

by Dan Cederholm

37. </td>

38. <td class="item-stock">In Stock</td>

39. <td class="item-qty">1</td>

40. <td class="item-price">$30.17</td>

41. </tr>

42. </tbody>

43. <tfoot>

44. <tr>

45. <td colspan="3">Subtotal</td>

46. <td>$135.36</td>

47. </tr>

48. <tr>

49. <td colspan="3">Tax</td>

50. <td>$13.54</td>

51. </tr>

52. <tr>

53. <td colspan="3">Total</td>

54. <td>$148.90</td>

55. </tr>

56. </tfoot>

57. </table>

CSS

1. table {

2. border-collapse: separate;

3. border-spacing: 0;

4. color: #4a4a4d;

5. font: 14px/1.4 "Helvetica Neue", Helvetica, Arial, sans-serif;

6. }

7. th,

8. td {

9. padding: 10px 15px;

10. vertical-align: middle;



Lesson 11 · Organizing Data with Tables  247

11. }

12. thead {

13. background: #395870;

14. color: #fff;

15. }

16. th:first-child {

17. text-align: left;

18. }

19. tbody tr:nth-child(even) {

20. background: #f0f0f2;

21. }

22. td {

23. border-bottom: 1px solid #c6c7cc;

24. border-right: 1px solid #c6c7cc;

25. }

26. td:first-child {

27. border-left: 1px solid #c6c7cc;

28. }

29. .book-title {

30. color: #395870;

31. display: block;

32. }

33. .item-stock,

34. .item-qty {

35. text-align: center;

36. }

37. .item-price {

38. text-align: right;

39. }

40. .item-multiple {

41. display: block;

42. }

43. tfoot {

44. text-align: right;

45. }

46. tfoot tr:last-child {

47. background: #f0f0f2;

48. }



248 Learn to Code HTML & CSS

Completely Styled Table
So far our table of books is looking pretty good. Let’s take it one step further by rounding 
some corners and styling some of the text just a little more. (see Figure 11.11).

Figure 11.11  
A full-featured table of books, 
now completely styled

HTML

1. <table>

2. <thead>

3. <tr>

4. <th scope="col" colspan="2">Item</th>

5. <th scope="col">Qty</th>

6. <th scope="col">Price</th>

7. </tr>

8. </thead>

9. <tbody>

10. <tr>

11. <td>

12. <strong class="book-title">Don&#8217;t Make Me Think

</strong>

13. <span class="text-offset">by Steve Krug</span>

14. </td>



Lesson 11 · Organizing Data with Tables  249

15. <td class="item-stock">In Stock</td>

16. <td class="item-qty">1</td>

17. <td class="item-price">$30.02</td>

18. </tr>

19. <tr>

20. <td>

21. <strong class="book-title">A Project Guide to UX Design

</strong>

22. <span class="text-offset">by Russ Unger &#38; Carolyn

Chandler</span>

23. </td>

24. <td class="item-stock">In Stock</td>

25. <td class="item-qty">2</td>

26. <td class="item-price">$52.94 <span class="text-offset

item-multiple">$26.47 &#215; 2</span></td>

27. </tr>

28. <tr>

29. <td>

30. <strong class="book-title">Introducing HTML5</strong>

31. <span class="text-offset">by Bruce Lawson &#38; Remy

Sharp</span>

32. </td>

33. <td class="item-stock">Out of Stock</td>

34. <td class="item-qty">1</td>

35. <td class="item-price">$22.23</td>

36. </tr>

37. <tr>

38. <td>

39. <strong class="book-title">Bulletproof Web Design</strong>

40. <span class="text-offset">by Dan Cederholm</span>

41. </td>

42. <td class="item-stock">In Stock</td>

43. <td class="item-qty">1</td>

44. <td class="item-price">$30.17</td>

45. </tr>

46. </tbody>

47. <tfoot>

continues



250 Learn to Code HTML & CSS

48. <tr class="text-offset">

49. <td colspan="3">Subtotal</td>

50. <td>$135.36</td>

51. </tr>

52. <tr class="text-offset">

53. <td colspan="3">Tax</td>

54. <td>$13.54</td>

55. </tr>

56. <tr>

57. <td colspan="3">Total</td>

58. <td>$148.90</td>

59. </tr>

60. </tfoot>

61. </table>

CSS

1. table {

2. border-collapse: separate;

3. border-spacing: 0;

4. color: #4a4a4d;

5. font: 14px/1.4 "Helvetica Neue", Helvetica, Arial, sans-serif;

6. }

7. th,

8. td {

9. padding: 10px 15px;

10. vertical-align: middle;

11. }

12. thead {

13. background: #395870;

14. background: -webkit-linear-gradient(#49708f, #293f50);

15. background:    -moz-linear-gradient(#49708f, #293f50);

16. background:         linear-gradient(#49708f, #293f50);

17. color: #fff;

18. font-size: 11px;

19. text-transform: uppercase;

20. }

21. th:first-child {

22. border-top-left-radius: 5px;



Lesson 11 · Organizing Data with Tables  251

23. text-align: left;

24. }

25. th:last-child {

26. border-top-right-radius: 5px;

27. }

28. tbody tr:nth-child(even) {

29. background: #f0f0f2;

30. }

31. td {

32. border-bottom: 1px solid #c6c7cc;

33. border-right: 1px solid #c6c7cc;

34. }

35. td:first-child {

36. border-left: 1px solid #c6c7cc;

37. }

38. .book-title {

39. color: #395870;

40. display: block;

41. }

42. .text-offset {

43. color: #7c7c80;

44. font-size: 12px;

45. }

46. .item-stock,

47. .item-qty {

48. text-align: center;

49. }

50. .item-price {

51. text-align: right;

52. }

53. .item-multiple {

54. display: block;

55. }

56. tfoot {

57. text-align: right;

58. }

59. tfoot tr:last-child {

continues



252 Learn to Code HTML & CSS

60. background: #f0f0f2;

61. color: #395870;

62. font-weight: bold;

63. }

64. tfoot tr:last-child td:first-child {

65. border-bottom-left-radius: 5px;

66. }

67. tfoot tr:last-child td:last-child {

68. border-bottom-right-radius: 5px;

69. }

In Practice
Now that we know how to create and style tables, let’s wrap up the last remaining page 
of our Styles Conference website, the schedule.

1. We’ll begin our Schedule page by opening up the schedule.html file and adding a 
<section> element with a class attribute value of row, much like we’ve done with 
all of the other subpages. Within this new <section> element let’s also add a <div> 
element with a class attribute value of container.

1. <section class="row">

2. <div class="container">

3. ...

4. </div>

5. </section>

With these elements and classes we’ve created a new section of the page with a 
white background and vertical padding, and we’ve centered our content on the 
page. What’s different here from all of the other subpages is the container class 
attribute value in place of the grid class attribute value on the <div> element. Since 
we’re not using any of the col-based classes we’ll forgo the grid class attribute 
value in favor of the container class attribute value.

2. Within the new section we’ll add three tables, one for each day of the conference. 
The tables will display the events of each day using three columns and multiple rows 
and will include a table head and table body.

To get started let’s outline the structure of the first table, including the <table>, 
<thead>, and <tbody> elements.



Lesson 11 · Organizing Data with Tables  253

1. <section class="row">

2. <div class="container">

3.

4. <table>

5. <thead>

6. ...

7. </thead>

8. <tbody>

9. ...

10. </tbody>

11. </table>

12.

13. </div>

14. </section>

3. Currently, even though our first table doesn’t contain any data, it does have some 
styles applied to it. Specifically, the reset we added back in Lesson 1 to tone down all 
of the default browser styles has added the border-collapse property with a value 
of collapse and the border-spacing property with a value of 0 to the table. We 
want these styles, so we’ll leave them alone; however, let’s create a new section in 
our main.css file to add some additional styles.

In our new section of styles specifically for the Schedule page (which will appear just 
below the styles for the Speakers page), let’s set our <table> elements to have a 
width of 100% and a bottom margin of 44 pixels.

Then, using the :last-child pseudo-class selector to identify the last <table> 
element within the section, let’s set its bottom margin to 0 pixels. Doing so prevents 
this table from conflicting with the bottom padding belonging to the <section>  
element with a class attribute value of row.

So far, the new section within our main.css file looks like this:

1. /*

2. ========================================

3. Schedule

4. ========================================

5. */

6.

7. table {

continues



254 Learn to Code HTML & CSS

8. margin-bottom: 44px;

9. width: 100%;

10. }

11. table:last-child {

12. margin-bottom: 0;

13. }

4. Now let’s add some data to our table. We’ll begin with the first day of our conference, 
the workshop day on August 24.

Within the <thead> element of the table let’s add a <tr> element. The first cell 
within the row will be a <th> element noting the focus of the day: “Workshops” for 
this specific day. Since the <th> element is the heading for the row we’ll also add the 
scope attribute with a value of row to it.

After the <th> element comes a <td> element with the date, “August 24th” in this 
case. Now, more often than not we’ll have three columns, the first being a table 
heading that identifies a time of day and the second two columns being regular table 
cells that identify speakers for that given time. Since this row doesn’t feature two 
separate speakers we’ll want to add the colspan attribute with a value of 2 to the 
<td> element, forcing it to span two columns.

Our code for the table now looks like this:

1. <table>

2. <thead>

3. <tr>

4. <th scope="row">

5. Workshops

6. </th>

7. <td colspan="2">

8. August 24th

9. </td>

10. </tr>

11. </thead>

12. <tbody>

13. ...

14. </tbody>

15. </table>



Lesson 11 · Organizing Data with Tables  255

5. Inside the <tbody> element let’s fill out the day’s activities. We’ll begin by adding a 
<tr> element with a <th> and a <td> element directly inside the row.

On the <th> element, and all subsequent <th> elements, we’ll add the scope attri-
bute with a value of row to semantically identify this element as the header for the 
row. Then within the <th> element let’s add a <time> element that shows the time 
of the first activity of the day, “8:30 AM” in this case. We’ll also include a datetime 
attribute on the <time> element with a value noting the time in hours, minutes, and 
seconds, 08:30:00.

In the <td> element that follows the <th> element we’ll include the activity name 
(since there aren’t any speakers at this time), which is “Registration” in this case. 
Since there is only one activity at this time we’ll also include the colspan attribute 
with a value of 2 on the <td> element.

In all, the code for our first table looks like this:

1. <table>

2. <thead>

3. <tr>

4. <th scope="row">

5. Workshops

6. </th>

7. <td colspan="2">

8. August 24th

9. </td>

10. </tr>

11. </thead>

12. <tbody>

13. <tr>

14. <th scope="row">

15. <time datetime="08:30:00">8:30 AM</time>

16. </th>

17. <td colspan="2">

18. Registration

19. </td>

20. </tr>

21. </tbody>

22. </table>



256 Learn to Code HTML & CSS

6. For the second row within the <tbody> element let’s add a <tr> element just below 
our previous row. Then let’s add a <th> element with the scope attribute with a value 
of row, and again add a <time> element with the appropriate time and datetime 
attribute value within that <th> element.

After the <th> element let’s add two <td> elements for the two speakers presenting  
at that time. Directly inside each <td> element we’ll add an <a> element, which 
will link back to where that speaker is positioned on the Speakers page. Remember, 
we added id attributes with each speaker’s name to the parent elements for each 
speaker. Using that id attribute value preceded by the speakers.html filename 
and a pound/hash sign, #, we can link directly to that speaker’s talk description and 
biography on the Speakers page.

Within the <a> element we’ll include an <h4> element with the speaker’s name  
followed by the talk title.

The code for the first two workshops looks like this:

1. <table>

2. <thead>

3. <tr>

4. <th scope="row">

5. Workshops

6. </th>

7. <td colspan="2">

8. August 24th

9. </td>

10. </tr>

11. </thead>

12. <tbody>

13. <tr>

14. <th scope="row">

15. <time datetime="08:30:00">8:30 AM</time>

16. </th>

17. <td colspan="2">

18. Registration

19. </td>

20. </tr>

21. <tr>



Lesson 11 · Organizing Data with Tables  257

22. <th scope="row">

23. <time datetime="09:00:00">9:00 AM</time>

24. </th>

25. <td>

26. <a href="speakers.html#adam-connor">

27. <h4>Adam Connor</h4>

28. Lights! Camera! Interaction! Design Inspiration from

Filmmakers

29. </a>

30. </td>

31. <td>

32. <a href="speakers.html#jennifer-jones">

33. <h4>Jennifer Jones</h4>

34. What Designers Can Learn from Parenting

35. </a>

36. </td>

37. </tr>

38. </tbody>

39. </table>

7. From here, we can repeat this pattern for each activity and speaker to finish our first 
table and then add the next two tables for the second two days of the conference.

While doing this, keep in mind that the table head will always include a table heading 
noting the events of the day and a table cell spanning two columns showing the date.

Then, within the body of each table, every row will have a table heading that shows 
the time of day. After the table heading will be an activity, a speaker, or multiple 
speakers. Activities without speakers will reside within a single <td> element that 
spans two columns. If only one speaker is presenting at a certain time, that speaker 
will reside within a single <td> element that spans two columns as well, <a> and 
<h4> elements and all.

If there are two speakers for a given time then each speaker will reside within his or 
her own <td> element, just as before.



258 Learn to Code HTML & CSS

The full code for all three tables can be found at http://learn.shayhowe.com/ 
html-css/organizing-data-with-tables. For reference, the table for the first day,  
which includes lunch and two more speakers, looks like this:

1. <table>

2. <thead>

3. <tr>

4. <th scope="row">

5. Workshops

6. </th>

7. <td colspan="2">

8. August 24th

9. </td>

10. </tr>

11. </thead>

12. <tbody>

13. <tr>

14. <th scope="row">

15. <time datetime="08:30:00">8:30 AM</time>

16. </th>

17. <td colspan="2">

18. Registration

19. </td>

20. </tr>

21. <tr>

22. <th scope="row">

23. <time datetime="09:00:00">9:00 AM</time>

24. </th>

25. <td>

26. <a href="speakers.html#adam-connor">

27. <h4>Adam Connor</h4>

28. Lights! Camera! Interaction! Design Inspiration from

Filmmakers

29. </a>

30. </td>

31. <td>

32. <a href="speakers.html#jennifer-jones">

http://learn.shayhowe.com/html-css/organizing-data-with-tables
http://learn.shayhowe.com/html-css/organizing-data-with-tables


Lesson 11 · Organizing Data with Tables  259

33. <h4>Jennifer Jones</h4>

34. What Designers Can Learn from Parenting

35. </a>

36. </td>

37. </tr>

38. <tr>

39. <th scope="row">

40. <time datetime="12:30:00">12:30 PM</time>

41. </th>

42. <td colspan="2">

43. Lunch

44. </td>

45. </tr>

46. <tr>

47. <th scope="row">

48. <time datetime="14:00">2:00 PM</time>

49. </th>

50. <td>

51. <a href="speakers.html#tessa-harmon">

52. <h4>Tessa Harmon</h4>

53. Crafty Coding: Generating Knitting Patterns

54. </a>

55. </td>

56. <td>

57. <a href="speakers.html#russ-unger">

58. <h4>Russ Unger</h4>

59. From Muppets to Mastery: Core UX Principles from Mr. Jim

Henson

60. </a>

61. </td>

62. </tr>

63. </tbody>

64. </table>



260 Learn to Code HTML & CSS

8. Now that our tables are taking shape, it’s time to add a little style to them. Let’s begin 
by adding some general styles to the <th> and <td> elements. For both the <th> and 
<td> elements let’s add a bottom padding of 22 pixels and a vertical alignment of 
top. For <th> elements specifically let’s add a right padding of 45 pixels, a text align-
ment of right, and a width of 20%. Then, for <td> elements let’s add a width of 40%.

Below our existing table and schedule styles, our code should look like this:

1. th,

2. td {

3. padding-bottom: 22px;

4. vertical-align: top;

5. }

6. th {

7. padding-right: 45px;

8. text-align: right;

9. width: 20%;

10. }

11. td {

12. width: 40%;

13. }

9. Next, let’s style the table head and the elements within the table head. We’ll set a 
line-height of 44 pixels on the <thead> element only, and a color of #648880  
and a font-size of 24 pixels on all <th> elements nested within a <thead> element. 
Our new styles include the following:

1. thead {

2. line-height: 44px;

3. }

4. thead th {

5. color: #648880;

6. font-size: 24px;

7. }



Lesson 11 · Organizing Data with Tables  261

10. The table head is looking good, so let’s also add some styles for the table body. We’ll 
begin with <th> elements nested within the <tbody> element: changing their color, 
adding some font- and text-based styles, and adding some top padding.

1. tbody th {

2. color: #a9b2b9;

3. font-size: 14px;

4. font-weight: 400;

5. padding-top: 22px;

6. text-transform: uppercase;

7. }

11. We’ll also add some styles to <td> elements nested within the <tbody> element, 
beginning with a top border and padding. We’ll style the <td> elements that span 
only one column by adding 15 pixels of right padding to those that form the left 
column and 15 pixels of left padding to those that form the right column. Doing so 
puts a total of 30 pixels of padding between the two columns while keeping each cell 
the same size. We don’t need to apply any left or right padding to the <td> elements 
that span two columns.

We’ll add all of these horizontal paddings using the :first-of-type, :last-of-
type, and :only-of-type pseudo-class selectors. These pseudo-class selectors 
work very similarly to the :last-child pseudo-class selector we’ve used before.

The :first-of-type pseudo-class selector will select the first element of its type 
within a parent element. In our case, the td:first-of-type selector will select the 
first <td> element within a <tr> element. Then, the :last-of-type pseudo-class 
selector will select the last element of its type within a parent element.

Again, in our case, the td:last-of-type selector will select the last <td> element 
within a <tr> element. Lastly, the :only-of-type pseudo-class selector will select 
an element if it’s the only element of its type within a parent element. Here, the 
td:only-of-type selector will only select a <td> element if it’s the only <td>  
element within a <tr> element, such as when a <td> element spans two columns.

Our styles are a little complex, but they’re flexible in addressing the needs of our 
table. These new styles include the following:

1. tbody td {

2. border-top: 1px solid #dfe2e5;

3. padding-top: 21px;

4. }

continues



262 Learn to Code HTML & CSS

5. tbody td:first-of-type {

6. padding-right: 15px;

7. }

8. tbody td:last-of-type {

9. padding-left: 15px;

10. }

11. tbody td:only-of-type {

12. padding-left: 0;

13. padding-right: 0;

14. }

12. Our schedule—and the tables that display it—is coming together. Let’s adjust a few 
of the styles on existing elements to clean up the design. We’ll start by making all of 
the links within the table a medium gray. If we target only the <a> elements within a 
table, our headings with the speaker’s name within the links will remain green, while 
the talk titles will be gray, creating a nice contrast between the two.

While we’re adjusting the styles of the entries for the talks, let’s also remove the bot-
tom margin on the <h4> elements within the table, allowing the speaker’s name to 
sit closer to her or his title. We can implement these styles with the following code:

1. table a {

2. color: #888;

3. }

4. table h4 {

5. margin-bottom: 0;

6. }

13. Lastly, let’s create some visual contrast among the different types of activities hap-
pening throughout the day. All of the talks look good with our latest changes. For 
all of the other activities, such as registration, lunch, and breaks (which are within 
the table body) as well as for the date (which is within the table header) let’s use a 
subtle gray.

We’ll do so by creating a new class, schedule-offset, and assigning a color of 
#a9b2b9 to it.

1. .schedule-offset {

2. color: #a9b2b9;

3. }



Lesson 11 · Organizing Data with Tables  263

Once the class is in place, let’s add it to all of the <td> elements that span two col-
umns and include either the day’s date or a designated activity—registration, lunch, 
or a break. Looking back to our table for the first day, the workshops day, the HTML 
will look like this:

1. <table>

2. <thead>

3. <tr>

4. <th scope="row">

5. Workshops

6. </th>

7. <td class="schedule-offset" colspan="2">

8. August 24th

9. </td>

10. </tr>

11. </thead>

12. <tbody>

13. <tr>

14. <th scope="row">

15. <time datetime="08:30:00">8:30 AM</time>

16. </th>

17. <td class="schedule-offset" colspan="2">

18. Registration

19. </td>

20. </tr>

21. ...

22. <tr>

23. <th scope="row">

24. <time datetime="12:30:00">12:30 PM</time>

25. </th>

26. <td class="schedule-offset" colspan="2">

27. Lunch

28. </td>

29. </tr>

30. ...

31. </tbody>

32. </table>



264 Learn to Code HTML & CSS

Tables, which may appear simple on the surface, can be quite complex, and that is the 
case with our Styles Conference schedule. The good news is that our schedule is now 
complete, and it’s looking great (see Figure 11.12).

The source code for the exercises within this lesson can be found at http:// 
learn.shayhowe.com/html-css/organizing-data-with-tables.

Figure 11.12 The Schedule page, which includes multiple tables, for Styles Conference

http://learn.shayhowe.com/html-css/organizing-data-with-tables
http://learn.shayhowe.com/html-css/organizing-data-with-tables


Lesson 11 · Organizing Data with Tables  265

Summary
All right, we now know how to semantically lay out tabular data within HTML while also 
making it intuitive with CSS. Discussing tables was our last major hurdle in learning HTML 
and CSS, and we have now officially finished our Styles Conference website.

To review, within this lesson we covered the following:

• The best ways to semantically create tables

• How to make individual table cells span multiple columns or rows

• The structural elements that make up tables

• Different ways to style borders on a table, and how different border properties affect 
a table’s appearance

• How to vertically align text within a table

We’ve done a great job at putting all of our new skills to use, and we’re miles beyond 
where we were a few lessons ago. Let’s end on a high note, tie up some loose ends, and 
look at ways to write our best possible code.



Lesson 12

Writing Your Best Code

There’s a lot to learn—different elements, attributes, properties, 

values, and more—in order to write HTML and CSS. Every lesson  

until this point has had the primary objective of explaining these 

various components of HTML and CSS, in hopes of helping you 

to understand the core fundamentals of both languages. This 

lesson takes a step back and looks at a more abstract picture of 

HTML and CSS.

More specifically, this lesson focuses on the best coding practices  

for both HTML and CSS. These coding practices serve as an over- 

arching framework for writing HTML and CSS. They apply to every  

lesson and should always be kept in mind when programming.

When you’re reviewing these best practices think about how they 

may be used in other areas or programming languages, too. For 

example, the use of comments to organize code (as we cover in  

this lesson) is beneficial in all programming languages. Keep an  

open mindset and consider how you can fully utilize each practice.



Lesson 12 · Writing Your Best Code  267

HTML Coding Practices
A lot of coding best practices emphasize keeping code lean and well organized. The 
general practices within HTML are no different. The goal is to write well-structured and 
standards-compliant markup. The guidelines described here provide a brief introduction 
to HTML coding practices; this is by no means an exhaustive list.

Write Standards-Compliant Markup
HTML, by nature, is a forgiving language that allows poor code to execute and render to 
varying levels of accuracy. Successful rendering, however, does not mean that our code is 
semantically correct or guarantee that it will validate as standards compliant. In addition,  
poor code is unpredictable, and you can’t be certain what you’re going to get when it ren-
ders. We have to pay close attention when writing HTML and be sure to nest and close all 
elements correctly, to use IDs and classes appropriately, and to always validate our code.

The code that follows has multiple errors, including using the intro ID attribute value 
multiple times when it should be a unique value, closing the <p> and <strong> elements 
in the wrong order within the first paragraph, and not closing the <p> element at all in the 
second paragraph.

BAD CODE

1. <p id="intro">New items on the menu today include <strong>caramel

apple cider and breakfast crepes</p>.</strong>

2. <p id="intro">The caramel apple cider is delicious.

GOOD CODE

1. <p class="intro">New items on the menu today include

<strong>caramel apple cider and breakfast crepes</strong>.</p>

2. <p class="intro">The caramel apple cider is delicious.</p>

Make Use of Semantic Elements
The library of elements in HTML is fairly large, with well over 100 elements available for 
use. Deciding which elements to use to describe different content may be difficult, but 
these elements are the backbone of semantics. We need to research and double-check 



268 Learn to Code HTML & CSS

our code to ensure we are using the proper semantic elements. Users will thank us in the 
long run for building a more accessible website, and your HTML will arguably be easier 
to style. If you are ever unsure of your code, find a friend to help out and perform routine 
code reviews.

Here the HTML doesn’t use the proper heading and paragraph elements; instead, it uses 
meaningless elements to style and group content.

BAD CODE

1. <span class="heading"><strong>Welcome Back</span></strong>

2. <br><br>

3. It has been a while. What have you been up to lately?

4. <br><br>

GOOD CODE

1. <h1>Welcome Back</h1>

2. <p>It has been a while. What have you been up to lately?</p>

Use the Proper Document Structure
As previously mentioned, HTML is a forgiving language and, therefore, pages will render 
without the use of the <!DOCTYPE html> doctype or <html>, <head>, and <body> ele-
ments. Without a doctype and these structural elements, pages will not render properly 
in every browser.

We must always be sure to the use proper document structure, including the <!DOCTYPE
html> doctype, and the <html>, <head>, and <body> elements. Doing so keeps our pages 
standards compliant and fully semantic, and helps guarantee they will be rendered as  
we wish.

BAD CODE

1. <html>

2. <h1>Hello World</h1>

3. <p>This is a web page.</p>

4. </html>



Lesson 12 · Writing Your Best Code  269

GOOD CODE

1. <!DOCTYPE html>

2. <html>

3. <head>

4. <title>Hello World</title>

5. </head>

6. <body>

7. <h1>Hello World</h1>

8. <p>This is a web page.</p>

9. </body>

10. </html>

Keep the Syntax Organized
As pages grow, managing HTML can become quite a task. Thankfully there are a few quick 
rules that can help us keep our syntax clean and organized. These include the following:

• Use lowercase letters within element names, attributes, and values

• Indent nested elements

• Strictly use double quotes, not single or completely omitted quotes

• Remove the forward slash at the end of self-closing elements

• Omit the values on Boolean attributes

Observing these rules will help keep our code neat and legible. Looking at the two sets of 
HTML here, the good code is easier to digest and understand.

BAD CODE

1. <Aside>

2. <h3>Chicago</h3>

3. <H5 HIDDEN='HIDDEN'>City in Illinois</H5>

4. <img src=chicago.jpg alt="Chicago, the third most populous city

in the United States" />

5. <ul>

6. <li>234 square miles</li>

7. <li>2.715 million residents</li>

8. </ul>

9. </ASIDE>



270 Learn to Code HTML & CSS

GOOD CODE

1. <aside>

2. <h3>Chicago</h3>

3. <h5 hidden>City in Illinois</h5>

4. <img src="chicago.jpg" alt="Chicago, the third most populous city

in the United States">

5. <ul>

6. <li>234 square miles</li>

7. <li>2.715 million residents</li>

8. </ul>

9. </aside>

Use Practical ID & Class Values
Creating ID and class values can be one of the more difficult parts of writing HTML. These 
values need to be practical, relating to the content itself, not the style of the content. Using 
a value of red to describe red text isn’t ideal, as it describes the presentation of the con-
tent. Should the style of the text ever need to be changed to blue, not only does the CSS 
have to be changed, but so does the HTML in every instance where the class red exists.

The HTML here assumes that the alert message will be red. However, should the style of 
the alert change to orange the class name of red will no longer make sense and will likely 
cause confusion.

BAD CODE

1. <p class="red">Error! Please try again.</p>

GOOD CODE

1. <p class="alert">Error! Please try again.</p>



Lesson 12 · Writing Your Best Code  271

Use the Alternative Text Attribute on Images
Images should always include the alt attribute. Screen readers and other accessibility 
software rely on the alt attribute to provide context for images.

The alt attribute value should be very descriptive of what the image contains. If the 
image doesn’t contain anything of relevance, the alt attribute should still be included; 
however, the value should be left blank so that screen readers will ignore it rather than 
read the name of the image file.

Additionally, if an image doesn’t have a meaningful value—perhaps it is part of the user 
interface, for example—it should be included as a CSS background image if at all possible, 
not as an <img> element.

BAD CODE

1. <img src="puppy.jpg">

GOOD CODE

1. <img src="puppy.jpg" alt="A beautiful, two-year-old hound mix puppy">

Separate Content from Style
Never, ever, use inline styles within HTML. Doing so creates pages that take longer to 
load, are difficult to maintain, and cause headaches for designers and developers. Instead, 
use external style sheets, using classes to target elements and apply styles as necessary.

Here, any desired changes to styles within the bad code must be made in the HTML. 
Consequently, these styles cannot be reused, and the consistency of the styles will  
likely suffer.

BAD CODE

1. <p style="color: #393; font-size: 24px;">Thank you!</p>

GOOD CODE

1. <p class="alert-success">Thank you!</p>



272 Learn to Code HTML & CSS

Avoid a Case of “Divitis”
When writing HTML, it is easy to get carried away adding a <div> element here and a 
<div> element there to build out any necessary styles. While this works, it can add quite 
a bit of bloat to a page, and before too long we’re not sure what each <div> element does.

We need to do our best to keep our code lean and to reduce markup, tying multiple styles 
to a single element where possible. Additionally, we should use the HTML5 structural 
elements where suitable.

BAD CODE

1. <div class="container">

2. <div class="article">

3. <div class="headline">Headlines Across the World</div>

4. </div>

5. </div>

GOOD CODE

1. <div class="container">

2. <article>

3. <h1>Headlines Across the World</h1>

4. </article>

5. </div>

Continually Refactor Code
Over time websites and code bases continue to evolve and grow, leaving behind quite a 
bit of cruft. Remember to remove old code and styles as necessary when editing a page. 
Let’s also take the time to evaluate and refactor our code after we write it, looking for 
ways to condense it and make it more manageable.



Lesson 12 · Writing Your Best Code  273

CSS Coding Practices
Similar to those for HTML, the coding practices for CSS focus on keeping code lean and 
well organized. CSS also has some additional principles regarding how to work with some 
of the intricacies of the language.

Organize Code with Comments
CSS files can become quite extensive, spanning hundreds of lines. These large files can 
make finding and editing our styles nearly impossible. Let’s keep our styles organized in 
logical groups. Then, before each group, let’s provide a comment noting what the follow-
ing styles pertain to.

Should we wish, we can also use comments to build a table of contents at the top of 
our file. Doing so reminds us—and others—exactly what is contained within the file and 
where the styles are located.

BAD CODE

1. header { ... }

2. article { ... }

3. .btn { ... }

GOOD CODE

1. /* Primary header */

2. header { ... }

3.

4. /* Featured article */

5. article { ... }

6.

7. /* Buttons */

8. .btn { ... }



274 Learn to Code HTML & CSS

Write CSS Using Multiple Lines & Spaces
When writing CSS, it is important to place each selector and declaration on a new line. 
Then, within each selector we’ll want to indent our declarations.

After a selector and before the first declaration comes the opening curly bracket, {, which 
should have a space before it. Within a declaration, we need to put a space after the 
colon, :, that follows a property and end each declaration with a semicolon, ;.

Doing so makes the code easy to read as well as edit. When all of the code is piled into a 
single line without spaces, it’s hard to scan and to make changes.

BAD CODE

1. a,.btn{background:#aaa;color:#f60;font-size:18px;padding:6px;}

GOOD CODE

1. a,

2. .btn {

3. background: #aaa;

4. color: #f60;

5. font-size: 18px;

6. padding: 6px;

7. }

Comments & Spacing

These two recommendations, organizing code with comments and using multiple lines 
and spaces, are not only applicable to CSS, but also to HTML or any other language. 
Overall we need to keep our code organized and well documented. If a specific part of 
our code is more complex, let’s explain how it works and what it applies to within com-
ments. Doing so helps others working on the same code base, as well as ourselves when 
we revisit our own code down the road.



Lesson 12 · Writing Your Best Code  275

Use Proper Class Names
Class names (or values) should be modular and should pertain to content within an ele-
ment, not appearance, as much as possible. These values should be written in such a way 
that they resemble the syntax of the CSS language. Accordingly, class names should be 
all lowercase and should use hyphen delimiters.

BAD CODE

1. .Red_Box { ... }

GOOD CODE

1. .alert-message { ... }

Build Proficient Selectors
CSS selectors can get out of control if they are not carefully maintained. They can easily 
become too long and too location specific.

The longer a selector is and the more prequalifiers it includes, the higher specificity it 
will contain. And the higher the specificity the more likely a selector is to break the CSS 
cascade and cause undesirable issues.

Also in line with keeping the specificity of our selectors as low as possible, let’s not use 
IDs within our selectors. IDs are overly specific, quickly raise the specificity of a selector, 
and quite often break the cascade within our CSS files. The cons far outweigh the pros 
with IDs, and we are wise to avoid them.

Let’s use shorter and primarily direct selectors. Nest them only two to three levels deep, 
and remove as many location-based qualifying selectors as possible.

BAD CODE

1. #aside #featured ul.news li a { ... }

2. #aside #featured ul.news li a em.special { ... }

GOOD CODE

1. .news a { ... }

2. .news .special { ... }



276 Learn to Code HTML & CSS

Use Specific Classes When Necessary
There are times when a CSS selector is so long and specific that it no longer makes sense. 
It creates a performance lag and is strenuous to manage. In this case, using a class alone 
is advised. While applying a class to the targeted element may create more code within 
HTML, it will allow the code to render faster and will remove any managing obstacles.

For example, if an <em> element is nested within an <h1> element inside of an <aside> 
element, and all of that is nested within a <section> element, the selector might look 
something like aside h1 em. Should the <em> element ever be moved out of the <h1> 
element the styles will no longer apply. A better, more flexible selector would use a class, 
such as text-offset, to target the <em> element.

BAD CODE

1. section aside h1 em { ... }

GOOD CODE

1. .text-offset { ... }

Use Shorthand Properties & Values
One feature of CSS is the ability to use shorthand properties and values. Most properties 
and values have acceptable shorthand alternatives. As an example, rather than using four 
different margin-based property and value declarations to set the margins around all four 
sides of an element, use one single margin property and value declaration that sets the 
values for all four sides at once. Using the shorthand alternative allows us to quickly set 
and identify styles.

When we’re only setting one value, though, shorthand alternatives should not be used. 
If a box only needs a bottom margin, use the margin-bottom property alone. Doing 
so ensures that other margin values will not be overwritten, and we can easily identify 
which side the margin is being applied to without much cognitive effort.

BAD CODE

1. img {

2. margin-top: 5px;

3. margin-right: 10px;



Lesson 12 · Writing Your Best Code  277

4. margin-bottom: 5px;

5. margin-left: 10px;

6. }

7. button {

8. padding: 0 0 0 20px;

9. }

GOOD CODE

1. img {

2. margin: 5px 10px;

3. }

4. button {

5. padding-left: 20px;

6. }

Use Shorthand Hexadecimal Color Values
When available, use the three-character shorthand hexadecimal color value, and always 
use lowercase characters within any hexadecimal color value. The idea, again, is to remain 
consistent, prevent confusion, and embrace the syntax of the language the code is being 
written in.

BAD CODE

1. .module {

2. background: #DDDDDD;

3. color: #FF6600;

4. }

GOOD CODE

1. .module {

2. background: #ddd;

3. color: #f60;

4. }



278 Learn to Code HTML & CSS

Drop Units from Zero Values
One way to easily cut down on the amount of CSS we write is to remove the unit from any 
zero value. No matter which length unit is being used—pixels, percentages, em, and so  
forth—zero is always zero. Adding the unit is unnecessary and provides no additional value.

BAD CODE

1. div {

2. margin: 20px 0px;

3. letter-spacing: 0%;

4. padding: 0px 5px;

5. }

GOOD CODE

1. div {

2. margin: 20px 0;

3. letter-spacing: 0;

4. padding: 0 5px;

5. }

Group & Align Vendor Prefixes
With CSS3, vendor prefixes gained some popularity, adding quite a bit of code to CSS 
files. The added work of using vendor prefixes is often worth the generated styles; how-
ever, they have to be kept organized. In keeping with the goal of writing code that is easy 
to read and modify, it’s best to group and indent individual vendor prefixes so that the 
property names stack vertically, as do their values.

Depending on where the vendor prefix is placed, on the property or the value, the align-
ment may vary. For example, the following good code keeps the background property 
aligned to the left, while the prefixed linear-gradient() functions are indented to keep 
their values vertically stacked. Then, the prefixed box-sizing property is indented as 
necessary to keep the box-sizing properties and values vertically stacked.

As always, the objective is to make the styles easier to read and to edit.



Lesson 12 · Writing Your Best Code  279

BAD CODE

1. div {

2. background: -webkit-linear-gradient(#a1d3b0, #f6f1d3);

3. background: -moz-linear-gradient(#a1d3b0, #f6f1d3);

4. background: linear-gradient(#a1d3b0, #f6f1d3);

5. -webkit-box-sizing: border-box;

6. -moz-box-sizing: border-box;

7. box-sizing: border-box;

8. }

GOOD CODE

1. div {

2. background: -webkit-linear-gradient(#a1d3b0, #f6f1d3);

3. background:    -moz-linear-gradient(#a1d3b0, #f6f1d3);

4. background:         linear-gradient(#a1d3b0, #f6f1d3);

5. -webkit-box-sizing: border-box;

6. -moz-box-sizing: border-box;

7. box-sizing: border-box;

8. }

Vendor Prefixes

When using vendor prefixes we need to make sure to place an unprefixed version of our 
property and value last, after any prefixed versions. Doing so ensures that browsers that 
support the unprefixed version will render that style according to its placement within 
the cascade, reading styles from the top of the file to the bottom.

The good news is that browsers are largely moving away from using vendor prefixes. 
Over time this will become less of a concern; however, for now we’re well advised to 
double-check which styles require a vendor prefix and to keep those prefixes organized.



280 Learn to Code HTML & CSS

Modularize Styles for Reuse
CSS is built to allow styles to be reused, specifically with the use of classes. For this rea-
son, styles assigned to a class should be modular and available to share across elements 
as necessary.

If a section of news is presented within a box that includes a border, background color, 
and other styles, the class of news might seem like a good option. However, those same 
styles may also need to be applied to a section of upcoming events. The class of news 
doesn’t fit in this case. A class of feat-box would make more sense and may be widely 
used across the entire website.

BAD CODE

1. .news {

2. background: #eee;

3. border: 1px solid #ccc;

4. border-radius: 6px;

5. }

6. .events {

7. background: #eee;

8. border: 1px solid #ccc;

9. border-radius: 6px;

10. }

GOOD CODE

1. .feat-box {

2. background: #eee;

3. border: 1px solid #ccc;

4. border-radius: 6px;

5. }



Lesson 12 · Writing Your Best Code  281

Summary
Hopefully the principles of writing beautiful HTML and CSS are starting to become clear 
here. While each language does have its own intricacies, the majority of these practices 
can be shared across the two languages—and many other computer languages.

Individually we need to do our best to uphold these practices, and when working on a 
team we need to do our best to help educate the team on these practices, too. Likewise, 
our teams may have valuable suggestions and practices that we should work together  
to follow.

To highlight some of the overarching themes of this lesson, our HTML and CSS  
should always

• Be well organized, so that it is easy to read, edit, and maintain

• Be modular and flexible, allowing us to reuse code and patterns as necessary

• Look as if one person wrote it, even if several people contributed

These practices are only the beginning, and as the languages evolve and we write more 
and more HTML and CSS, we’ll develop new ones. It’s all part of the beauty of knowing 
HTML and CSS.

You’re now equipped with some very powerful knowledge about how to build websites 
with HTML and CSS, and I’m excited to see what you do with it. Keep me posted on how 
it goes, and happy building!



Index

- (hyphen), 38
; (semicolon), 8, 274
: (colon), 8
. (period), 10
{ } (curly brackets), 8, 9, 274
& (ampersand), 31
# (hash sign), 10, 46
< > (angle brackets), 2
% unit notation, 51

A

<a> element, 29
absolute lengths, 50
absolute paths, 30
absolute positioning, 96–98
absolute value, 96–98
action attribute, 205
Adobe Kuler, 47
alert message example, 136–137
alignment

float values and, 114
images, 185–186
list items, 170
text, 114, 121, 122
vendor prefixes, 278–279
vertical, 91

alpha channels, 48
alt attribute, 179, 271
alt (alternative) text, 179
alternative (alt) text, 179
ampersand (&), 31
anchor elements, 29
anchor links, 3, 29
anchor tags, 3
angle brackets < >, 2
<article> element, 25
<aside> element, 26, 76, 78
aspect ratio, 180
attributes

for, 213
action, 205
alt, 179, 271

audio, 189–190
autoplay, 189, 191
charset, 5
checkbox, 209
cite, 129, 130–131
class, 3, 10
cols, 208
colspan, 237–238
container class, 244
controls, 189, 191
datetime, 255
described, 3–4
disabled, 215
headers, 234
height, 180–181
hidden, 215
hidden, 215
href, 3, 11, 12, 30
id, 3, 10, 213, 234, 256
ID, 172
intro ID value, 267
loop, 189, 191
method, 205
multiple, 210
name, 205, 208, 210
placeholder, 216
poster, 192
preload, 189–190, 191
rel, 11
required, 216
reversed, 158–160
rows, 208
rowspan, 237–238
scope, 232, 234, 255
seamless, 194–195
selected, 210
src, 3, 179, 189, 190
start, 159
target, 31
type, 190, 205–208
value, 160, 208
width, 180–181

audio, 189–191

282 Learn to Code HTML & CSS



audio controls, 192
audio fallbacks, 190–191
audio file formats, 193
audio files, 189–191
<audio> element, 189–191
autoplay attribute, 189, 191

B

<b> element, 21–22
background color, 37–38, 242–243
background images, 134–137

background-position, 155–156
centering, 135
code example, 136–137, 152–153
considerations, 134
hyperlink paths, 134
vs. image elements, 183
multiple, 152–153
positioning, 135
repeating, 134
shorthand values, 134, 136, 152
specifying size for, 153–155
specifying surface area, 155–156

background pattern, 180
background property, 133, 134, 142, 164, 183
background-clip property, 155–156
background-color property, 133
background-image property, 134, 142, 183
background-origin property, 155–156
background-position property, 135
background-repeat property, 134
backgrounds, 132–156

color, 133, 137
considerations, 132
fallback options, 133
new CSS properties, 153–156
practice example, 137–141
transparent, 133

background-size property, 153–155
block elements, 18, 59
block positioning images, 182
block values, 54, 182
block-level elements, 29, 54, 55, 182
<blockquote> element, 128, 130–131
<body> element, 4, 5
bold text, 21–22
border property, 62–64

border-box value, 67, 155–156
border-collapse property, 238–239, 241, 243
borders

adding to rows, 241–242
box model, 62–64
images, 182
padding and, 60
radius, 63–64
sides, 63
size, 62–63
styles, 62–63
tables, 238–242

border-spacing property, 240–241
box model, 53–73
box model

border box, 66
borders, 62–64
box sizing, 64–67
content box, 65
described, 56
element display, 54–55
element height, 57–58, 59
element padding, 60–62
element width, 57–58
margins, 59–62
padding box, 66
practice exercise, 68–73
working with, 56–67

boxes
content, 65
padding, 66
sizing, 64–67

box-shadow property, 116
box-sizing property, 64–67
braces { }, 8, 9
browsers

audio file formats, 190, 193
Chrome, 65, 67–68
cross-browser compatibility, 12–13
cross-browser testing, 13
developer tools, 67–68
Firefox, 65
Google Chrome, 65, 67–68
Internet Explorer, 65
Safari, 65
vendor prefixes, 65, 279
video file formats, 193

<button> element, 211

Index  283



buttons
background color, 43
font size, 43
forms, 208–209, 211
radio, 208–209
styles, 138–139

C

capitalize value, 116
<caption> element, 234
captions

figures, 202
table, 234

cascade, 37–38
cascading properties, 37–38
Cascading Style Sheets. See CSS
cells, combining, 237–238
cf class, 83
characters

encodings, 2
hexadecimal colors, 46, 277
special, 28

charset attribute, 5
check boxes, 209
checkbox attribute, 209
Chrome browser, 65, 67–68
citations, 128, 129, 130–131
cite attribute, 129, 130–131
<cite> element, 128, 130–131
class attribute, 3, 10
class selectors, 10, 38
class values, 270
classes

multiple, 42–43
names, 275
pseudo-classes, 106
tips for, 275, 276
values, 275

clear property, 80
clearfix, 83
clearfix class, 83
clearing floats, 80
closing tags, 3
code validation, 6
coding best practices, 266–281

CSS, 273–280
general guidelines, 281

HTML, 267–272
reusable layouts, 90–94

col value, 232
colon (:), 8
color

background, 37–38, 133, 137, 242–243
borders, 62
gradients, 146–147
hexadecimal values, 46–47, 277
HSL/HSLa, 49–50
keyword, 44–45
links, 137–138
margins and, 62
opacity, 48
padding and, 62
RGB/RGBa, 48
sRGB, 44
in tables, 242–243
text, 100, 138
transparent, 48

color channels, 46–50
color property, 100
color stops, 146–147
color values, 42–50
color wheel, 47
cols attribute, 208
colspan attribute, 237–238
comments

in CSS, 19, 273, 274
in HTML code, 19

contain keyword value, 154
container class, 69
container class attribute, 252
content, 74–98. See also media

absolute positioning, 96–98
centering, 69
embeddable, 3
grouping, 25
positioning with floats, 75–86
positioning with inline-block, 87–89
related, 26
relative positioning, 95–96
reusable layouts, 90
self-contained, 25
semantic decisions and, 25, 267–268
separating from style, 271
source for, 3
in tables, 234–235
wrapping, 79

284 Learn to Code HTML & CSS



content boxes, 65
content-box value, 65, 155–156
controls attribute, 189, 191
cover keyword value, 154
creative works, citing, 128
cross-browser compatibility, 12–13
cross-browser testing, 13
CSS (Cascading Style Sheets)

best practices, 273–280
calculating specificity, 38–39
cascading properties, 37–38
class names/values, 275
code validators, 6
color values, 42–50
comments in, 19, 273, 274
considerations, 2
described, 2, 36
dropping units from zero values, 278
good vs. bad code examples, 273–280
length values, 50–52
modularized styles, 280
multiple lines and, 274
property values, 44–52
referencing, 11–12
reusable layouts, 90
shorthand alternatives. See shorthand values
spacing and, 274
terminology, 7–9
units of measurement, 50–52
vendor prefixes, 278–279

.css extension, 11
CSS pseudo-classes, 106
CSS resets, 12–15, 28
CSS selectors

IDs and, 275
tips for, 275

CSS3 gradient generators, 146
CSS3 gradients, 146
curly brackets { }, 8, 9, 274

D

data, table, 231–232, 254
datetime attribute, 255
<dd> element, 160–161
description lists, 160–161
developer tools, 67–68

dialogue citation, 129
dialogue quotation, 129
disabled attribute, 215
display property, 54–55, 167, 182
display value, 77, 169
<div> element, 18–19, 25, 272
divisions, 18–19, 25
<dl> element, 160–161
<!DOCTYPE html> declaration, 4, 5
Dreamweaver, 4
drop-down lists, 209–210
<dt> element, 160–161

E

elements
absolute positioning, 96–98
block-level, 18, 29, 54, 55
borders, 62–64
classifying, 3
described, 2
displaying, 54–55
floating, 76
height of, 57–58, 59
hiding, 55
identifying, 3
indenting, 5
inline, 18, 54, 55
margins, 59–62
nested, 5
padding, 60–62
relative positioning, 95–96
self-closing, 5
text-based, 20–23
width of, 57–58

em unit notation, 51
em units, 51
<em> element, 22–23, 276
email addresses

linking to, 30–31
validation, 216

Eric Meyer’s reset, 12, 13
error message styles, 216
external citation, 130–131
external quotation, 130
external style sheets, 11, 12

Index  285



F

fallback options
audio, 190–191
backgrounds, 133
fonts, 101
video, 191, 193

fields, text, 205–207
fieldsets, 214
<figcaption> element, 202
<figure> element, 201–202
figures, 201–202
file input, 212
files

adding to forms, 212
audio, 189–191
comments, 19
CSS, 273, 275, 278
external, 4, 24
gradient image, 142
links to, 24
organizing, 19

Firefox browser, 65
:first-of-type pseudo-class selector, 261
float property, 75, 77, 79, 114, 167, 182
floating

clearing floats, 80
considerations, 95
containing floats, 80–83
content, 75–86
images, 182–183
lists, 167–168

font families, 101
font property, 104
font variants, 102
@font-face at-rule, 124
font-family property, 101, 124
fonts

bold, 102–103
considerations, 99, 125
described, 100
embedded, 99, 124–127
example code, 105–106
fallback options, 101
Google Fonts, 125
italics, 102
licensing issues, 125
practice exercise, 106–113

properties, 101–113
shorthand values, 104
size, 51, 101
styles, 102
vs. typefaces, 100
web-safe, 123–124
weights, 102–103

font-size property, 101
font-style property, 102
font-variant property, 102
font-weight property, 102–103, 126, 127
<footer> element, 26, 28
footers, 26, 235
for attribute, 213
<form> element, 205
forms, 204–228

adding files to, 212
adding to pages, 205
buttons, 208–209, 211
check boxes, 209
disabling elements/controls, 215
drop-down lists, 209–210
example code, 217–219
fieldsets, 214
hidden inputs, 212
initializing, 205
input attributes/values, 215–217
labels, 213
legends, 214–215
login, 217–219
multiple selections, 210
organzing elements in, 212–215
overview, 204
placeholder controls, 216
practice example, 219–226
required values, 216
text fields, 205–207
textareas, 208
validation, 216

G

gif format, 180
Google Chrome browser, 65, 67–68
Google Fonts, 125
gradient backgrounds, 142–151

changing direction of, 143–144
color stops, 146–147

286 Learn to Code HTML & CSS



considerations, 142
CSS3, 146
example code, 147–148
linear, 142–144
practice example, 148–151
radial, 145–146
vendor prefixes, 142

gradients
background. See gradient backgrounds

grid class attribute, 91, 92, 171, 195, 220, 252.
group class, 81

H

<h> element, 5, 20, 24
hash sign (#), 10, 46
<head> element, 4, 5, 11, 24
<header> element, 24, 27
headers

table, 232–234, 235
text, 24, 27

headers attribute, 234
headings, 5, 20
height attribute, 180–181
height property, 56, 58, 59, 180
hexadecimal colors, 46–47, 277
hexadecimal values, 100, 133, 147
hidden attribute, 215
hidden inputs, 212
hiding elements, 55
:hover pseudo-class, 106
href attribute, 3, 11, 12, 30
hsl() function, 49
HSLa value, 133
HSL/HSLa colors, 49–50
HTML (HyperText Markup Language), 2–4
HTML code

best practices, 267–272
class values, 270
comments in, 19
considerations, 2
described, 2
divisions, 18–19
document structure, 268–269
example of basic code, 4–5
good vs. bad code examples, 267–272

headings, 20
hyperlinks. See hyperlinks
ID values, 270
inline styles and, 271
paragraphs, 21
refactoring code, 272
referencing CSS in, 11–12
removing code, 272
reusable layouts, 90
semantics in, 18, 267–268
spans, 18–19
standards-compliant markup, 267
structural elements, 23–29
syntax organization, 269–270
terminology, 2–4
text-based elements, 20–23
validators, 6
version, 4

HTML document structure, 4–7
.html extension, 4
<html> element, 4, 5
hyperlink reference. See href
hyperlinks

adding, 32–35
anchor, 3, 29
background images, 134
to citations, 128, 129
colors, 137–138
creating, 29–35
described, 29
to email addresses, 30–31
navigation, 24
opening links in new window, 31
to other pages of website, 30
to parts of same page, 32
to quotations, 129
specifying, 3

HyperText Markup Language. See HTML
hyphen (-), 38

I

<i> element, 22–23
icons, 180
id attribute, 3, 10, 213, 234, 256
ID attributes, 172
ID selectors, 10, 38, 39

Index  287



ID values, 270
<iframe> element, 193–195
image elements, 183
image formats, 180
images, 179–188

adding to pages, 179
alignment, 185–186
alt attribute, 271
aspect ratio, 180
background. See background images
borders, 182
distorted, 180
embedded, 179
floating, 182–183
flush left/right, 182–183
margins, 182–183
padding, 182
positioning, 181–183
practice exercise, 183–188
sizing, 180–181
spacing, 182–183

<img> element, 179, 181, 183
indenting text, 115
index.html file, 15
inline elements, 18
inline frames, 193–195
inline styles, 11, 271
inline value, 54, 166–167
inline-block elements

positioning content with, 87–89
removing spaces between, 88–89
sizing, 59
space between, 55

inline-block value, 55, 166–167
inline-level elements, 59
<input> element, 205
inside property value, 165, 166
internal style sheets, 11
Internet Explorer, 65
intro ID attribute value, 267
italicized text, 22–23, 102

J

jpg format, 180

K

key selector, 40
keyword color values, 44–45, 47

L

<label> element, 213
labels, 213
:last-child pseudo-class selector, 170, 241, 253
:last-of-type pseudo-class selector, 261
leading, 103–104
legends, 214–215
length values, 50–52
letter spacing, 117
letter-spacing property, 117
<li> element, 158
linear gradients, 142–143
linear-gradient () function, 143, 149
line-height property, 103–104
<link> element, 11–12, 125–126
links

adding, 32–35
anchor, 3, 29
background images, 134
to citations, 128, 129
colors, 137–138
creating, 29–35
described, 29
to email addresses, 30–31
navigation, 24
opening links in new window, 31
to other pages of website, 30
to parts of same page, 32
to quotations, 129
specifying, 3

list item markers
floating and, 167
setting content of, 163–165
using images as, 164–165

list items
alignment, 170
styling, 163–166

lists, 157–177
changing values in, 160
considerations, 157
description, 160–161

288 Learn to Code HTML & CSS



drop-down, 209–210
floating, 167–168
horizontally displaying, 166–169
navigational, 168–169
nesting, 162–163
numbered, 158–160
ordered, 158–160
overview, 157
practice example, 169–176
reverse order, 158–160
sample code, 168–169
unordered, 158

list-style property value, 166
list-style-position property, 165–166
list-style-type property, 163–165
login forms, 217–219
loop attribute, 189, 191
lowercase value, 116

M

“magic corners,” 144
mailto:, 31
main.css file, 12
margin property, 59–62, 182–183
margins

images, 182–183
overview, 59–62

measurement, units of, 50–52
media, 178–203. See also content

audio, 189–191
considerations, 178
embedded, 193
images. See images
inline frames, 193–195
video, 191–193

media player, 192
<meta> element, 5
method attribute, 205
mp3 format, 190
multiple attribute, 210

N

name attribute, 205, 208, 210
<nav> element, 24
navigation menus, 33–34, 168–169

navigational links, 24
navigational lists, 168–169
nested elements, 5
nesting lists, 162–163
none value, 55
Normalize.css, 12–13
Notepad++, 4
:nth-child pseudo-class selector, 242–243
number sign (#), 10, 46
numbered lists, 158–160

O

offset class, 96
ogg format, 190
<ol> element, 158–160
:only-of-type pseudo-class selector, 261
opacity, 48
opening tags, 3
<option> elements, 208
ordered lists, 158–160
outside property value, 165

P

<p> element, 5, 21
padding, 60–62, 66, 182
padding property

box model, 60–62, 66
tables, 260–262

padding-box value, 66, 155–156
pages. See web pages
paragraphs, 21
paths

absolute, 30
hyperlink, 134
relative, 30

pattern, background, 180
percentages, 51
performance, 276
period (.), 10
photographs, 180
pixels, 50
placeholder attribute, 216
placeholder controls, 216
png format, 180
position property, 95–98

Index  289



poster attribute, 192
pound sign (#), 10, 46
preload attribute, 189–190, 191
properties

background, 133, 134, 142, 164, 183
background-clip, 155–156
background-color, 133
background-image, 134, 142, 183
background-origin, 155–156
background-position, 135
background-repeat, 134
background-size, 153–155
border, 62–64
border-collapse, 238–239, 241, 243
border-spacing, 240–241
box-shadow, 116
box-sizing, 64–67
cascading, 37–38
cascading properties, 37–38
clear, 80
color, 100
described, 8
display, 54–55, 167, 182
float, 75, 77, 79, 114, 167, 182
font, 104
font-based, 101–113
font-family, 101, 124
fonts, 101–113
font-size, 101
font-style, 102
font-variant, 102
font-weight, 102–103, 126, 127
height, 56, 58, 59, 180
letter-spacing, 117
line-height, 103–104
list-style, 166
list-style-position, 165–166
list-style-type, 163–165
margin, 59–62, 182–183
padding, 60–62, 66, 260–262
position, 95–98
text, 113–123
text-align, 114, 244–247
text-based, 101–123
text-decoration, 114
text-indent, 115
text-shadow, 115–116

text-transform, 116
vertical-align, 244
width, 57–58, 180
word-spacing, 117

prose citation, 129
prose quotation, 129
pseudo-class selectors, 261
px unit notation, 50

Q

<q> element, 128, 129
quotations, 128, 129, 130

R

radial gradients, 145–146
radial-gradient() function, 145
radio buttons, 208–209
rel attribute, 11
relative lengths, 51
relative paths, 30
relative positioning, 95–96
relative value, 95–96
required attribute, 216
reusable layouts, 90–94
reversed attribute, 158–160
rgb() function, 48
rgba() function, 48
RGB/RGBa colors, 48
root directory, 12
row value, 232
rows

adding borders to, 241–242
gradient background, 148
styles, 139–140
table, 230

rows attribute, 208
rowspan attribute, 237–238

S

Safari browser, 65
scope attribute, 232, 234, 255
seamless attribute, 194–195
<section> elements, 25, 27, 76, 140, 149
<select> element, 210

290 Learn to Code HTML & CSS



selected attribute, 210
selectors

additional, 11
calculating specificity, 38–39
class, 10, 38
combining, 40–42
described, 8
ID, 10, 38, 39
spaces within, 41
specificity within, 42
type, 9, 38
working with, 9–11

semantic elements, 267–268
semantics, 18, 267–268
semicolon (;), 8, 274
shorthand values

background images, 134, 136, 152
borders, 62
example of, 276–277
fonts, 104
hexadecimal color values, 46, 277
list-style property, 166
margins, 60–61
padding, 60–61
tips for, 276

<small> element, 28
<source> elements, 190–191
spaces

between inline-block elements, 88–89
within selectors, 41

spacing
borders, 240–241
CSS and, 274
images, 182–183
inline-block elements and, 55

<span> element, 18–19
spans, 18–19
special characters, 28
specificity points, 38, 42
specificity weight, 38–39, 42
src attribute, 3, 179, 189, 190
sRGB color, 44
start attribute, 159
striping, 242–243
<strong> element, 21–22
style sheets, 11. See also CSS

styles. See also CSS
borders, 62–63
buttons, 138–139
error messages, 216
fonts, 102
layering, 42–43
list items, 163–166
multiple classes, 42–43
rows, 139–140
separating content from, 271
tables, 248–252, 260–262

Styles Conference website. See websites
Sublime Text, 4
submit button, 211

T

table data, 231–232, 254
<table> element, 230
tables, 229–265

aligning text in, 244–247
borders, 238–242
captions, 234
color in, 242–243
combining cells, 237–238
contents of, 235–236
creating, 230–234
footers, 235
headers, 232–234, 235
overview, 229
padding, 260–262
practice example, 252–264
rows, 230
striping, 242–243
structure, 234–238
styling, 248–252, 260–262
table body, 235

tags
anchor, 3
closing, 3, 190, 211
described, 3
end, 208
opening, 3, 190, 211
start, 208

target attribute, 31
<tbody> element, 235
<td> element, 231–232, 234

Index  291



terminology
CSS, 7–9
HTML, 2–4

text
aligning, 114, 121–122
aligning in tables, 244–247
bold, 21–22, 102–103
citations, 128, 129, 130–131
color, 100, 138
example code, 118–119
indenting, 115
inline changes, 116
italicized, 22–23, 102
leading, 103–104
letter spacing, 117
line height, 103–104
practice exercise, 119–123
properties, 113–123
quotations, 128, 129, 130
shadows, 115–116
small caps, 102
underlined, 114, 119–120
word spacing, 117

text decoration, 114
text editors, 4
text fields, 205–207
text-align property, 114, 244–247
<textarea> element, 208
textareas, 208
text-based elements, 20–23
text-decoration property, 114
text-indent property, 115
text-shadow property, 115–116
text-transform property, 116
TextWrangler, 4
<tfoot> element, 235
<th> element, 232, 234
<thead> element, 235
<time> element, 255
<title> element, 5
<tr> element, 230
tracking, 117
transparency, 48
transparent backgrounds, 133

.txt extension, 4
type attribute, 190, 205–208

type selectors, 9, 38
typeface weights, 103
typefaces

considerations, 99, 125
described, 100
vs. fonts, 100
licensing issues, 125

typography, 99–131

U

<ul> element, 158
underlined text, 114, 119–120
units of measurement, 50–52
unordered lists

described, 158
practice example, 169–176
sample code, 168–169

uppercase value, 116
url () function, 134
URLs, 193

V

validation
code, 6
email, 216
forms, 216
standards-compliant markup, 267

value attribute, 160, 208
values

described, 8–9
vendor prefixes, 65, 142, 278–279
vertical alignment, 91
vertical margins, 60
vertical padding, 60
vertical-align property, 244
video, 191–193
video controls, 192
video fallbacks, 193
video file formats, 193
video hosting websites, 193
video player, 193
<video> element, 191–193
Vimeo embedded video, 193

292 Learn to Code HTML & CSS



W

wav format, 190
web browsers

audio file formats, 190, 193
Chrome, 65, 67–68
cross-browser compatibility, 12–13
cross-browser testing, 13
developer tools, 67–68
Firefox, 65
Google Chrome, 65, 67–68
Internet Explorer, 65
Safari, 65
vendor prefixes, 65, 279
vendor prefixes and, 65, 279
video file formats, 193

web pages
adding forms to, 205
adding images to, 179
building structure, 23–29
links on, 32

Webkit, 65
web-safe fonts, 123–124
websites

adding audio, 189–191
adding container class to, 69
adding content. See content
adding CSS to, 13–15
adding figures/captions, 201–202

adding forms. See forms
adding images. See images
adding inline frames, 193–200
adding links, 32–35
adding multiple pages, 32–35
adding navigation menu, 33–34
adding new pages, 34
adding structure to, 26–29
adding video, 191–193
adjusting box size, 68–69
creating, 6–7
links to pages on, 30
positioning images, 181–183
reusable layouts, 90–94
video hosting, 193

width attribute, 180–181
width property, 57–58, 180
word spacing, 117
word-spacing property, 117

Y

YouTube videos, 193

Z

zero values, 278

Index  293


	Contents
	Intro
	Building first Web Page
	What Are HTML & CSS?
	Understanding Common HTML Terms
	Setting Up the HTML Document Structure
	Understanding Common CSS Terms
	Working with Selectors
	Referencing CSS
	Using CSS Resets
	Summary

	HTML
	Semantics Overview
	Identifying Divisions & Spans
	Using Text-Based Elements
	Building Structure
	Creating Hyperlinks
	Summary

	CSS
	The Cascade
	Calculating Speciﬁcity
	Combining Selectors
	Layering Styles with Multiple Classes
	Common CSS Property Values
	Summary

	Opening the Box Model
	How Are Elements Displayed?
	What Is the Box Model?
	Working with the Box Model
	Developer Tools
	Summary

	Positioning Content
	Positioning with Floats
	Positioning with Inline-Block
	Creating Reusable Layouts
	Uniquely Positioning Elements
	Summary

	Typography
	Adding Color to Text
	Changing Font Properties
	Applying Text Properties
	Using Web-Safe Fonts
	Embedding Web Fonts
	Including Citations & Quotes
	Summary

	Backgrounds & Gradients
	Adding a Background Color
	Adding a Background Image
	Designing Gradient Backgrounds
	Using Multiple Background Images
	Exploring New Background Properties
	Summary

	Lists
	Unordered Lists
	Ordered Lists
	Description Lists
	Nesting Lists
	List Item Styling
	Horizontally Displaying List
	Summary

	Media
	Adding Images
	Adding Audio
	Adding Video
	Adding Inline Frames
	Semantically Identifying Figures & Captions
	Summary

	Forms
	Initializing a Form
	Text Fields & Textareas
	Multiple Choice Inputs & Menus
	Form Buttons
	Other Inputs
	Organizing Form Elements
	Form & Input Attributes
	Login Form Example
	Summary

	Tables
	Creating a Table
	Table Structure
	Table Borders
	Table Striping
	Aligning Text
	Completely Styled Table
	In Practice
	Summary

	Writing best Code
	HTML Coding Practices
	CSS Coding Practices
	Summary

	Index



